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Appendix E Comparisons of allopatric and sym-

patric densities and extinction sequences

induced via increased mortality

Appendix E.1 Summary of approach and results

The sympatric density for each predator is determined by its equilibrium density at P4.
The allopatric density for Nj is determined by the equilibrium density at either PR1Nj

,
PR2Nj

, or P3,Nj
. The equilibrium to be used is determined by the unique globally

stable attractor in the three-species subsystem with Nj, R1, and R2. (Recall from
appendix B that bistability in the three-species subsystem prevents coexistence of all
four species.) If all three species coexist, then the allopatric density is determined
by P3,Nj

. If stable coexistence of all three species is not possible, then the allopatric
density is determined by (i) PRiNj

where i 6= j when ∆, ∆̄ < 0 or (i) PRiNj
where

i = j when ∆, ∆̄ > 0. Recall that we assume ∆ and ∆̄ have the same sign. For the
remainder of this section, unless otherwise stated, we use allopatric density to refer to
the density at the equilibrium that is globally stable in the three-species subsystem.

To make analytical predictions about the relations between the allopatric and
sympatric densities, we use the derivatives ∂N∗j /∂dk. To do this we start with pa-
rameter set p∗ where the coexistence equilibrium P4 exists and then determine how
the densities at P4 and the densities at the boundary equilibria change as one of the
mortality rates is increased or decreased. If the densities at P4 and the boundary
equilibria change in opposite directions, we can determine the relations between the
sympatric and allopatric densities for the parameter set p∗. For example, assume
that as d2 is increased, the density of N2 at P4 increases, the density of N2 at P3,N2

decreases, and N1 goes extinct before any prey species go extinct. Then we know
that the density of N2 at P4 is less than the density of N2 at P3,N2 for the parameter
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set p∗. If the densities at the equilibria change in the same way, then we cannot de-
termine the relations between the allopatric and sympatric densities. For instance, if
instead the densities of N2 at P4 and P3,N2 increase as d2 is increased, then we cannot
determine which density is larger using this method.

All of our analytical results are presented at the end of this subsection in theorems
1 and 2. Those results are summarized in Tables E1 and E2, respectively, where
parameter space is partitioned based on the signs of equations (C1) through (C4).
Note that many of the conditions in Tables E1 and E2 involving the two-species
equilibria PRiNj

hold only if P3,Nj
has negative entries. When P3,Nj

is a saddle point
with positive entries, one of the two-species equilibria PRiNj

will be globally attracting.
In these cases, the allopatric density at that globally attracting equilibrium can be
greater than or less than the sympatric density at P4. Exceptions, where the relations
between the densities at PRiNj

and P4 are independent of the positivity of P3,Nj
, are

denoted by daggers (†) in Tables E1 and E2.
Also note that while the proofs of our results depend on the signs of ∆ and ∆̄,

the interpretation of the results is the same for both cases. Our general results are
summarized in Table E3 where we list all possible relations between the allopatric
and sympatric densities for each region of parameter space defined by the signs of
equations (C1) through (C4). In some regions of parameter space the relations be-
tween the allopatric and sympatric densities can always be determined for one or both
predators. The allopatric densities are always higher than the sympatric densities for
both predators in the regions defined by the sign structures {+ + −−}, {+ + +−},
and {+ + −+}. For all of the rows in Table E3 where mutualism is not listed as a
possible interaction (e.g., the third row denoted by {−+ +−}), the allopatric density
is always higher than the sympatric density for at least one predator. Note that for
the regions where mutualism is a possibility, the relations between the allopatric and
sympatric densities are not constant throughout the region of parameter space and it
is possible to infer any of the indirect interactions in those regions.



Table E1: Relations between the allopatric and sympatric equilibrium densities when ∆, ∆̄ > 0

Region∗ PR1N1
Density∗∗ PR2N1

Density∗∗ P3,N1
Density PR1N2

Density∗∗ PR2N2
Density∗∗ P3,N2

Density

{+ +−−} N̄1(PR1N1) > N1 N̂1(P3,N1) > N1 N̄2(PR2N2) > N2 N̂2(P3,N2) > N2

{+ + +−} N̄1(PR1N1
) > N1 N̄1(PR2N1

) > N†1 N̂1(P3,N1
) > N‡1 N̄2(PR2N2

) > N†2 N̂2(P3,N2
) < N2

{−+ +−} N̄1(PR2N1
) > N†1 N̂1(P3,N1

) < N‡1 N̄2(PR2N2
) > N†2 N̂2(P3,N2

) < N2

{− −+−} N̄1(PR2N1
) > N†1 N̂1(P3,N1

) < N‡1 N̄2(PR1N2
) > N2 N̂2(P3,N2

) > N2

{−+ ++} N̄1(PR2N1
) > N†1 N̂1(P3,N1

) < N‡1 N̄2(PR1N2
) > N2 N̄2(PR2N2

) > N†2 N̂2(P3,N2
) > N‡2

{− −++} N̄1(PR2N1
) > N1 N̂1(P3,N1

) > N‡1 N̄2(PR1N2
) > N2 N̂2(P3,N2

) > N‡2
{−+−−} N̄1(PR2N1) > N†1 N̂1(P3,N1) < N1 N̄2(PR2N2) > N2 N̂2(P3,N2) > N2

{−+−+} N̄1(PR2N1) > N1 N̂1(P3,N1) > N1 N̄2(PR1N2) > N2 N̄2(PR2N2) > N2 N̂2(P3,N2) > N‡2
{− −−+} N̄1(PR2N1) > N1 N̂1(P3,N1) > N1 N̄2(PR1N2) > N†2 N̂2(P3,N2) < N‡2
{−+−+} N̄1(PR1N1) > N1 N̄1(PR2N1) > N1 N̂1(P3,N1) > N‡1 N̄2(PR1N2) > N2 N̂2(P3,N2) > N2

{+−++} N̄1(PR1N1
) > N†1 N̄1(PR2N1

) > N1 N̂1(P3,N1
) < N‡1 N̄2(PR1N2

) > N†2 N̂2(P3,N2
) > N‡2

{+ +−+} N̄1(PR1N1
) > N†1 N̂1(P3,N1

) < N1 N̄2(PR1N2
) > N†2 N̄2(PR2N2

) > N2 N̂2(P3,N2
) > N‡2

{+−−−} N̄1(PR1N1
) > N1 N̂1(P3,N1

) > N1 N̄2(PR1N2
) > N†2 N̂2(P3,N2

) < N2

{− −−−} N̄1(PR2N1
) > N†1 N̂1(P3,N1

) < N1 N̄2(PR1N2
) > N†2 N̂2(P3,N2

) < N2

{+−−+} N̄1(PR1N1
) > N†1 N̂1(P3,N1

) < N1 N̄2(PR1N2
) > N†2 N̂2(P3,N2

) < N‡2
N1 and N2 denote the sympatric equilibrium densities at P4. N̄1(·) and N̄2(·) denote the allopatric equilibrium densities
at the two-species equilibria. N̂1(·) and N̂2(·) denote the allopatric equilibrium densities at the three-species equilibria.
∗Regions of parameter space are defined by the signs of the derivatives in equations (C1) through (C4), respectively.
∗∗ Comparisons involving the two species equilibria (i.e., Nj(PRiNj

) > Nj) are guaranteed to hold only if the equilibrium
Nj(P3,Nj

) does not exist. Exceptions are denoted by †, i.e., † denote relations between Nj(PRiNj
) and Nj that always

hold.
‡ The determinant of the Jacobian evaluated at P3,Nj

is positive, implying that generic solutions will tend to one of the
two species equilibria. Because of this, the relation between the three-species allopatric density and sympatric density is
not biologically meaningful.
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Table E2: Relations between the allopatric and sympatric equilibrium densities when ∆, ∆̄ < 0

Region∗ PR1N1
Density∗∗ PR2N1

Density∗∗ P3,N1
Density PR1N2

Density∗ PR2N2
Density∗∗ P3,N2

Density

{+ +−−} N̄1(PR2N1) > N1 N̂1(P3,N1) > N1 N̄2(PR1N2) > N2 N̂2(P3,N2) > N2

{+ + +−} N̄1(PR1N1
) > N†1 N̄1(PR2N1

) > N1 N̂1(P3,N1
) > N‡1 N̄2(PR1N2

) > N†2 N̂2(P3,N2
) < N2

{−+ +−} N̄1(PR1N1
) > N†1 N̂1(P3,N1

) < N‡1 N̄2(PR1N2
) > N†2 N̂2(P3,N2

) < N2

{− −+−} N̄1(PR1N1
) > N†1 N̂1(P3,N1

) < N‡1 N̄2(PR2N2
) > N2 N̂2(P3,N2

) > N2

{−+ ++} N̄1(PR1N1
) > N†1 N̂1(P3,N1

) < N‡1 N̄2(PR1N2
) > N†2 N̄2(PR2N2

) > N2 N̂2(P3,N2
) > N‡2

{− −++} N̄1(PR1N1
) > N1 N̂1(P3,N1

) > N‡1 N̄2(PR2N2
) > N2 N̂2(P3,N2

) > N‡2
{−+−−} N̄1(PR1N1) > N†1 N̂1(P3,N1) < N1 N̄2(PR1N2) > N2 N̂2(P3,N2) > N2

{−+−+} N̄1(PR1N1) > N1 N̂1(P3,N1) > N1 N̄2(PR1N2) > N2 N̄2(PR2N2) > N2 N̂2(P3,N2) > N‡2
{− −−+} N̄1(PR1N1) > N1 N̂1(P3,N1) > N1 N̄2(PR2N2) > N†2 N̂2(P3,N2) < N‡2
{+−+−} N̄1(PR1N1) > N1 N̄1(PR2N1) > N1 N̂1(P3,N1) > N‡1 N̄2(PR2N2) > N2 N̂2(P3,N2) > N2

{+−++} N̄1(PR1N1
) > N1 N̄1(PR2N1

) > N†1 N̂1(P3,N1
) < N‡1 N̄2(PR2N2

) > N†2 N̂2(P3,N2
) > N‡2

{+ +−+} N̄1(PR2N1
) > N†1 N̂1(P3,N1

) < N1 N̄2(PR1N2
) > N2 N̄2(PR2N2

) > N†2 N̂2(P3,N2
) > N‡2

{+−−−} N̄1(PR2N1
) > N1 N̂1(P3,N1

) > N1 N̄2(PR2N2
) > N†2 N̂2(P3,N2

) < N2

{− −−−} N̄1(PR1N1
) > N†1 N̂1(P3,N1

) < N1 N̄2(PR2N2
) > N†2 N̂2(P3,N2

) < N2

{+−−+} N̄1(PR2N1
) > N†1 N̂1(P3,N1

) < N1 N̄2(PR2N2
) > N†2 N̂2(P3,N2

) < N‡2
N1 and N2 denote the sympatric equilibrium densities at P4. N̄1(·) and N̄2(·) denote the allopatric equilibrium densities
at the two-species equilibria. N̂1(·) and N̂2(·) denote the allopatric equilibrium densities at the three-species equilibria.
∗Regions of parameter space are defined by the signs of the derivatives in equations (C1) through (C4), respectively.
∗∗ Comparisons involving the two species equilibria (i.e., Nj(PRiNj

) > Nj) are guaranteed to hold only if the equilibrium
Nj(P3,Nj

) does not exist. Exceptions are denoted by †, i.e., † denote relations between Nj(PRiNj
) and Nj that always

hold.
‡ The determinant of the Jacobian evaluated at P3,Nj

is positive, implying that generic solutions will tend to one of the
two species equilibria. Because of this, the relation between the three-species allopatric density and sympatric density is
not biologically meaningful.



Table E3: Possible relations between allopatric and sympatric densities and the resulting inferred indirect interaction

Region∗ Possible N1 Relations Possible N2 Relations Classifications†

{+ +−−} Allop. > Symp. Allop. > Symp. Comp.
{+ + +−} Allop. > Symp. Allop. > Symp. Comp.
{−+ +−} Allop. > Symp.; Allop. < Symp. Allop. > Symp. Comp., Contra.
{− −+−} Allop. > Symp.; Allop. < Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra., Mut.
{−+ ++} Allop. > Symp.; Allop. < Symp. Allop. > Symp. Comp., Contra.
{− −++} Allop. > Symp.; Allop. < Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra., Mut.
{−+−−} Allop. > Symp.; Allop. < Symp. Allop. > Symp. Comp., Contra.
{−+−+} Allop. > Symp.; Allop. < Symp. Allop. > Symp. Comp., Contra.
{− −−+} Allop. > Symp.; Allop. < Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra., Mut.
{+−+−} Allop. > Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra.
{+−++} Allop. > Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra.
{+ +−+} Allop. > Symp. Allop. > Symp. Comp.
{+−−−} Allop. > Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra.
{− −−−} Allop. > Symp.; Allop. < Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra., Mut.
{+−−+} Allop. > Symp. Allop. > Symp.; Allop. < Symp. Comp., Contra.

Entries in columns 2 and 3 that have multiple relations imply that the allopatric density can be higher or lower than the
sympatric density in that region.
∗Regions of parameter space are defined by the signs of the derivatives in equations (C1) through (C4), respectively.
† Classifications are indirect competition (Comp.), indirect mutualism (Mut.), and indirect contramensalism (Contra.).
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Appendix E.2 Statement and proof of results

Here we present our analytical results about the relations between the allopatric and
sympatric densities of the predators. Each theorem presents the relations between
the allopatric and sympatric based on the signs of the derivatives (C1) through (C4).
Theorem 1 addresses the case where ∆̄ > 0. Theorem 2 addresses the case where
∆̄ < 0. Due to the similarity of the proofs, only the proof for statement (a) of
theorem 1 is presented at the end of this subsection.

Theorem 1. Assume ∆̄ > 0. Let p∗ denote a parameter set such that P4 has positive
entries and let d∗1 and d∗2 denote the predator mortality rates. Denote the entries
of P4 by [R∗1(P4), R

∗
2(P4), N

∗
1 (P4), N

∗
2 (P4)]. Let d1,l ≤ d∗1 ≤ d1,h denote the range

of d1 values such that N∗1 (P4) and N∗2 (P4) are nonnegative for all other parameters
fixed at p∗. Let d2,l ≤ d∗2 ≤ d2,h denote the range of d2 values such that N∗1 (P4)
and N∗2 (P4) are nonnegative for all other parameters fixed at p∗. Let P3,Nj

(dj) =

[R̂1(P3,Nj
, dj), R̂2(P3,Nj

, dj), N̂j(P3,Nj
, dj)] denote the solution to { 1

R1

dR1

dt
= 0, 1

R2

dR2

dt
=

0, 1
Nj

dNj

dt
= 0} where the mortality rate of Nj is dj and all other parameters are fixed

at p∗. Note that P3,Nj
(dj) may have non-positive entries. Denote the entries of the

boundary equilibria PRiNj
for p∗ by [R̄i(PRiNj

), N̄j(PRiNj
)]. Let δ = −∂N∗2/∂d2(P4)

and δ̄ = −∂N∗1/∂d1(P4).

(a) Assume ∂N∗1/∂d1 < 0 and ∂N∗2/∂d1 > 0 at P4. (i) If P3,N2(d
∗
2) has positive

entries, then N̂2(P3,N2 , d
∗
2) > N∗2 (P4). Otherwise, N̄2(PR2N2) > N∗2 (P4). (ii) If

∆∆̄(1 − α2)/δ < 0 and P3,N1(d1) has positive entries for d1 ∈ [d1,l, d
∗
1], then

N̂1(P3,N1 , d
∗
1) > N∗1 (P4).

(b) Assume ∂N∗1/∂d1 > 0 and ∂N∗2/∂d1 > 0 at P4. (i) Then N̄1(PR2N1) > N∗1 (P4)
and N̄2(PR2N2) > N∗2 (P4). (ii) If ∆∆̄(1 − α2)/δ > 0 and P3,N1(d1) has positive

entries for d1 ∈ [d1,l, d
∗
1], then N̂1(P3,N1 , d

∗
1) < N∗1 (P4). (iii) If P3,N2(d

∗
2) has

positive entries, then N̂2(P3,N2 , d
∗
2) < N∗2 (P4).

(c) Assume ∂N∗1/∂d1 > 0 and ∂N∗2/∂d1 < 0 at P4. (i) If ∆∆̄(1 − α2)/δ > 0 and
P3,N1(d1) has positive entries for d1 ∈ [d∗1, d1,h], then N̂1(P3,N1 , d

∗
1) > N∗1 (P4).

If P3,N1(d1) has non-positive entries for some d1 ∈ [d∗1, d1,h], then N̄1(PR2N1) >

N∗1 (P4). (ii) If P3,N2(d
∗
2) has positive entries, then N̂2(P3,N2 , d

∗
2) > N∗2 (P4). Oth-

erwise, N̄2(PR1N2) > N∗2 (P4).

(d) Assume ∂N∗1/∂d1 < 0 and ∂N∗2/∂d1 < 0 at P4. (i) N̄2(PR1N2) > N∗2 (P4). (ii)
If P3,N2(d

∗
2) has positive entries, then N̂2(P3,N2 , d

∗
2) < N∗2 (P4). (iii) If ∆∆̄(1 −

α2)/δ < 0 and P3,N1(d1) has positive entries for d1 ∈ [d∗1, d1,h], then N̂1(P3,N1 , d
∗
1) <

N∗1 (P4).

(e) Assume ∂N∗1/∂d2 > 0 and ∂N∗2/∂d2 < 0 at P4. If P3,N1(d
∗
1) has positive entries,

then N̂1(P3,N1 , d
∗
1) > N∗1 (P4). Otherwise, N̄1(PR1N1) > N∗1 (P4). (ii) If ∆∆̄(1 −
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α2)/δ̄ < 0 and P3,N2(d2) has positive entries for d2 ∈ [d2,l, d
∗
2], then N̂2(P3,N2 , d

∗
2) >

N∗2 (P4).

(f) Assume ∂N∗1/∂d2 > 0 and ∂N∗2/∂d2 > 0 at P4. (i) Then N̄1(PR1N1) > N∗1 (P4)
and N̄2(PR1N2) > N∗2 (P4). (ii) If ∆∆̄(1 − α2)/δ̄ > 0 and P3,N2(d2) has positive

entries for d2 ∈ [d2,l, d
∗
2], then N̂2(P3,N2 , d

∗
2) < N∗2 (P4). (iii) If P3,N1(d

∗
1) has

positive entries, then N̂1(P3,N1 , d
∗
1) < N∗1 (P4).

(g) Assume ∂N∗1/∂d2 < 0 and ∂N∗2/∂d2 > 0 at P4. (i) If ∆∆̄(1 − α2)/δ̄ > 0 and
P3,N2(d2) has positive entries for d2 ∈ [d∗2, d2,h], then N̂2(P3,N2 , d

∗
2) > N∗2 (P4).

If P3,N2(d2) has non-positive entries for some d2 ∈ [d∗2, d2,h], then N̄2(PR1N2) >

N∗2 (P4). (ii) If P3,N1(d
∗
1) has positive entries, then N̂1(P3,N1 , d

∗
1) > N∗1 (P4). Oth-

erwise, N̄1(PR2N1) > N∗1 (P4).

(h) Assume ∂N∗1/∂d2 < 0 and ∂N∗2/∂d2 < 0 at P4. (i) N̄1(PR2N1) > N∗1 (P4). (ii)
If P3,N1(d

∗
1) has positive entries, then N̂1(P3,N1 , d

∗
1) < N∗1 (P4). (iii) If ∆∆̄(1 −

α2)/δ̄ < 0 and P3,N2(d2) has positive entries for d2 ∈ [d∗2, d2,h], then N̂2(P3,N2 , d
∗
2) <

N∗2 (P4).

Theorem 2. Assume ∆̄ < 0. Let p∗ denote a parameter set such that P4 has positive
entries and let d∗1 and d∗2 denote the predator mortality rates. Denote the entries
of P4 by [R∗1(P4), R

∗
2(P4), N

∗
1 (P4), N

∗
2 (P4)]. Let d1,l < d∗1 < d1,h denote the range

of d1 values such that N∗1 (P4) and N∗2 (P4) are nonnegative for all other parameters
fixed at p∗. Let d2,l < d∗2 < d2,h denote the range of d2 values such that N∗1 (P4)
and N∗2 (P4) are nonnegative for all other parameters fixed at p∗. Let P3,Nj

(dj) =

[R∗1(P3,Nj
, dj), R

∗
2(P3,Nj

, dj), N
∗
j (P3,Nj

, dj)] denote the solution to { 1
R1

dR1

dt
= 0, 1

R2

dR2

dt
=

0, 1
Nj

dNj

dt
= 0} where the mortality rate of Nj is dj and all other parameters are fixed

at p∗. Note that P3,Nj
(dj) may have non-positive entries. Denote the entries of the

boundary equilibria PRiNj
for p∗ by [R̄I(PRiNj

), N̄j(PRiNj
)]. Let δ = −∂N∗2/∂d2(P4)

and δ̄ = −∂N∗1/∂d1(P4).

(a) Assume ∂N∗1/∂d1 < 0 and ∂N∗2/∂d1 > 0 at P4. (i) If P3,N2(d
∗
2) has positive

entries, then N̂2(P3,N2 , d
∗
2) > N∗2 (P4). Otherwise, N̄2(PR1N2) > N∗2 (P4). (ii) If

∆∆̄(1 − α2)/δ < 0 and P3,N1(d1) has positive entries for d1 ∈ [d1,l, d
∗
1], then

N̂1(P3,N1 , d
∗
1) > N∗1 (P4).

(b) Assume ∂N∗1/∂d1 > 0 and ∂N∗2/∂d1 > 0 at P4. (i) Then N̄1(PR1N1) > N∗1 (P4)
and N̄2(PR1N2) > N∗2 (P4). (ii) If ∆∆̄(1 − α2)/δ > 0 and P3,N1(d1) has positive

entries for d1 ∈ [d1,l, d
∗
1], then N̂1(P3,N1 , d

∗
1) < N∗1 (P4). (iii) If P3,N2(d

∗
2) has

positive entries, then N̂2(P3,N2 , d
∗
2) < N∗2 (P4).

(c) Assume ∂N∗1/∂d1 > 0 and ∂N∗2/∂d1 < 0 at P4. (i) If P3,N2(d2) has positive

entries, then N̂2(P3,N2 , d
∗
2) > N∗2 (P4). Otherwise, N̄2(PR2N2) > N∗2 (P4). (ii) If
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∆∆̄(1 − α2)/δ > 0 and P3,N1(d1) has positive entries for d1 ∈ [d∗1, d1,h], then

N̂1(P3,N1 , d
∗
1) > N∗1 (P4). If P3,N1(d1) has non-positive entries for some d1 ∈

[d∗1, d1,h], then N̄1(PR1N1) > N∗1 (P4).

(d) Assume ∂N∗1/∂d1 < 0 and ∂N∗2/∂d1 < 0 at P4. (i) N̄2(PR2N2) > N∗2 (P4). (ii)
If P3,N2(d

∗
2) has positive entries, then N̂2(P3,N2 , d

∗
2) < N∗2 (P4). (iii) If ∆∆̄(1 −

α2)/δ < 0 and P3,N1(d1) has positive entries for d1 ∈ [d∗1, d1,h], then N̂1(P3,N1 , d
∗
1) <

N∗1 (P4).

(e) Assume ∂N∗1/∂d2 > 0 and ∂N∗2/∂d2 < 0 at P4. (i) If P3,N1(d
∗
1) has positive

entries, then N̂1(P3,N1 , d
∗
1) > N∗1 (P4). Otherwise, N̄1(PR2N1) > N∗2 (P4). (ii) If

∆∆̄(1 − α2)/δ̄ < 0 and P3,N2(d2) has positive entries for d2 ∈ [d2,l, d
∗
2], then

N̂2(P3,N2 , d
∗
2) > N∗2 (P4).

(f) Assume ∂N∗1/∂d2 > 0 and ∂N∗2/∂d2 > 0 at P4. (i) Then N̄1(PR2N1) > N∗1 (P4)
and N̄2(PR2N2) > N∗2 (P4). (ii) If ∆∆̄(1 − α2)/δ̄ > 0 and P3,N2(d2) has positive

entries for d2 ∈ [d2,l, d
∗
2], then N̂2(P3,N2 , d

∗
2) < N∗2 (P4). (iii) If P3,N1(d

∗
1) has

positive entries, then N̂1(P3,N1 , d
∗
1) < N∗1 (P4).

(g) Assume ∂N∗1/∂d2 < 0 and ∂N∗2/∂d2 > 0 at P4. (i) If P3,N1(d
∗
1) has positive

entries, then N̂1(P3,N1 , d
∗
2) > N∗1 (P4). Otherwise, N̄1(PR1N1) > N∗1 (P4). (ii) If

∆∆̄(1 − α2)/δ̄ > 0 and P3,N2(d2) has positive entries for d2 ∈ [d∗2, d2,h], then

N̂2(P3,N2 , d
∗
2) > N∗2 (P4). If P3,N2(d2) has non-positive entries for some d2 ∈

[d∗2, d2,h], then N̄(PR2N2) > N∗2 (P4).

(h) Assume ∂N∗1/∂d2 < 0 and ∂N∗2/∂d2 < 0 at P4. (i) N̄1(PR1N1) > N∗1 (P4). (ii)
If P3,N1(d

∗
1) has positive entries, then N̂1(P3,N1 , d

∗
1) < N∗1 (P4). (iii) If ∆∆̄(1 −

α2)/δ̄ < 0 and P3,N2(d2) has positive entries for d2 ∈ [d∗2, d2,h], then N̂2(P3,N2 , d
∗
2) <

N∗2 (P4).

Proof. Due to the similarities of the proofs, we will only prove (a) from theorem
1. To help with presentation of the proof, we redefine the notation for P4. Let
P4(d1, d2) = [R∗1(d1, d2), R

∗
2(d1, d2), N

∗
1 (d1, d2), N

∗
2 (d1, d2)] denote the coexistence equi-

librium where all parameters except d1 and d2 are fixed at p∗. The coexistence equilib-
rium for p∗ is denoted by P4(d

∗
1, d
∗
2). Assume ∆̄ > 0, ∂N1/∂d1 < 0, and ∂N2/∂d1 > 0.

Differentiating the R1 and R2 entries of P4 yields

∂R∗1
∂d1

= −b22c22/∆̄;
∂R∗2
∂d1

= b21c21/∆̄;

∂R∗2
∂d2

= −b11c11/∆̄;
∂R∗1
∂d2

= b12c12/∆̄.

(E1)

Note that ∆̄ > 0 implies ∂R∗i /∂di > 0 and ∂R∗i /∂dj > 0 for i 6= j.
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Proof of a(i): Because ∂R∗1/∂d1 < 0, ∂N∗1/∂d1 < 0, and ∂N∗2/∂d1 > 0, as the value
of d1 is increased from d∗1 to d1, h, one of following must occur: (i) N∗1 (d1,h, d

∗
2) = 0

and R∗1(d1,h, d
∗
2) > 0 or (ii) R∗1(d, d

∗
2) = 0 for some d ∈ (d∗1, d1,h).

We first show that the second case occurs if and only if P3,N2(d
∗
2) has positive

entries. Assume N∗1 (d1,h, d
∗
2) = 0 and R∗1(d1,h) > 0. Because d1,h > d∗1, ∂R

∗
2/∂d1 > 0,

∂N∗2/∂d1 > 0, and R∗1(d1,h) > 0, it must be the case that P4(d1,h, d
∗
2) has exactly one

non-positive entry, namely N∗1 (d1,h, d
∗
2) = 0. Note that P4(d1,h, d

∗
2) and P3,N2(d

∗
2) are

the same point. Hence, P3,N2(d
∗
2) must exist and have positive entries. Conversely,

assume P3,N2(d
∗
2) has positive entries. Since P4(d

∗
1, d
∗
2) exists and system (1) is a Lotka-

Volterra system, there must exist a value d1,h such that N1 can invade for d1 < d1,h
and N1 cannot invade for larger values of d1 > d1,h. At d1 = d1,h, N∗1 (d1,h, d

∗
2) = 0 and

the equilibria P4(d1,h, d
∗
2) and P3,N2(d

∗
2) are the same point. Hence, N∗1 (d1,h, d

∗
2) = 0

and R∗1(d1,h, d
∗
2) > 0.

Assume P3,N2(d
∗
2) has positive entries. Because N∗1 (d1,h, d

∗
2) = 0, R∗1(d1,h, d

∗
2) >

0, ∂R∗2/∂d1 > 0 and ∂N∗2/∂d1 > 0, we have that N∗2 (d∗1, d
∗
2) < N∗2 (d1,h, d

∗
2) =

N̂2(P3,N2 , d
∗
2). Alternatively, assume R∗1(d, d

∗
2) = 0 for d∗1 < d < d1,h. When d1 = d,

the coexistence equilibrium satisfies

R∗2(d, d
∗
2) =

d2
b22c22

=
d

b12c12

N∗1 (d, d∗2) =
1

c12
[r2 − k2R∗2(d, d∗2)]−

c22
c12
N∗2 (d, d∗2)

N∗2 (d, d∗2) =
1

c22
[r2 − k2R∗2(d, d∗2)]−

c12
c22
N∗1 (d, d∗2)

(E2)

Note that setting N1(d, d
∗
2) = 0 in the above yields the boundary equilibrium PR2N2 .

Thus, because ∂N∗2/∂d1 > 0 and d > d∗1, we have that N̄2(PR2N2) ≥ N∗2 (d, d∗2) >
N∗2 (d∗1, d

∗
2).

Proof of a(ii): Assume ∆∆̄(1 − α2)/δ < 0. Because ∂R∗1/∂d1 < 0, ∂R∗1/∂d1 > 0,
∂N∗1/∂d1 < 0, and ∂N∗2/∂d1 > 0, as the value of d1 is decreased from d∗1 to d1,l, one
of following must occur: (i) N∗2 (d1,l, d

∗
2) = 0 and R∗2(d1,l, d

∗
2) > 0 or (ii) R∗2(d, d

∗
2) = 0

for some d ∈ (d1,l, d
∗
1). Similar to the proof of a(i), the former occurs if and only if

P3,N1(d1) has positive entries for d1 ∈ [d1,l, d
∗
1].

Assume P3,N1(d1) has positive entries for d1 ∈ [d1,l, d
∗
1]. Because N∗2 (d1,l, d

∗
2) = 0,

R∗1(d1,l, d
∗
2) > 0, R∗2(d1,l, d

∗
2) > 0 and ∂N∗1/∂d1 < 0, we have that N∗1 (d∗1, d

∗
2) <

N∗1 (d1,l, d
∗
2) = N̂1(P3,N2 , d1,l). Because N̂1(P3,N2 , d1) is an increasing function of d1

when ∆∆̄(1 − α2)/δ < 0, we have N∗1 (d∗1, d
∗
2) < N∗1 (d1,l, d

∗
2) = N̂1(P3,N2 , d1,l) <

N̂1(P3,N2 , d
∗
1).
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Appendix E.3 Extinction sequences induced via increased mor-
tality

The proofs of the theorems in the previous section are based on the sequences of
extinctions that occur via large increases or decreases in predator mortality. Here,
we use that theory to explore some of the nonintuitive effects that arise via large
increases in mortality.

Throughout we focus on increases in the mortality rate of one predator. We denote
the perturbed predator by Nj and the unperturbed predator by Nk. As the mortality
rate dj is increased, eventually one prey or predator species will go extinct. Which
particular species goes extinct first is determined by the relative abundances of the
species at the coexistence equilibrium, the derivatives (C1) through (C4), and the
analogous derivatives of the prey equilibrium densities (equations (E1) in the proof
theorem 5). There are three possibilities: (1) the perturbed species (Nj) goes extinct
first, (2) one of the prey species (R1 or R2) goes extinct first, or (3) the unperturbed
predator (Nk) goes extinct first. Subsequent extinctions may occur as dj is increased
further. In the following we list the sequences of extinctions that occur as dj increases.
Note that we do not consider cases where one predator species cannot exist in the
absence of the second predator; see next subsection.

Case 1: Perturbed predator (Nj) extinction occurs first. In this case,
the perturbed predator goes extinct first as its mortality is increased. When the
perturbed predator goes extinct, one of the prey species may also go extinct via
competitive exclusion or apparent competition. After the perturbed predator goes
extinct, no further changes in equilibrium densities occur as dj is increased. Mathe-
matically, after the perturbed predator goes extinct, the system will converges to one
of the allopatric equilibria of the unperturbed predator (PR1,Nk

, PR2,Nk
, or P3,Nk

). A
necessary condition for this case to occur as dj increases is ∂N∗j /∂dj < 0, i.e., the
perturbed predator does not exhibit a hydra effect.

Case 2: Prey extinction occurs first. In this case, one of the two prey species
goes extinct first. When that prey species goes extinct, it causes the perturbed preda-
tor to also go extinct. Thus, only the other prey species and the unperturbed predator
remain. Further increases in dj do not affect the system. Note that mathematically,
the two predator species can coexist with the remaining prey species at the bifurca-
tion point where the first prey species goes extinct. However, for our Lotka-Volterra
model this coexistence is structurally unstable because any infinitesimal increase in
dj will cause the perturbed predator to go extinct.

Case 3: Unperturbed predator (Nk) extinction occurs first. In this case,
increases in the mortality rate of the perturbed predator (dj) cause the unperturbed
predator to go extinct first. If the perturbed species does not exhibit a hydra effect,
then the perturbed predator will coexist with both prey species after the unperturbed
predator goes extinct. Alternatively, if the perturbed species does exhibit a hydra
effect, then the perturbed predator will coexist with only one prey species after the
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unperturbed predator goes extinct. In either case, further increases in the perturbed
predator’s mortality rate will eventually drive the perturbed predator to extinction.
Extinction of the perturbed predator allows for the unperturbed predator to invade
the system and coexist with one or both prey species. Further increases in dj do
not affect the system. A numerical example illustrating the extinction sequence that
occurs when the perturbed predator exhibits a hydra effect is presented in Figure 6A
of the main text.

Mathematically, a transcritical bifurcation occurs between P4 and P3,Nj
when the

unperturbed predator (Nk) goes extinct. As discussed in appendix B, P3,Nj
is a saddle

point equilibrium when Nj exhibits a hydra effect in the full system and is stable
otherwise. Thus, if Nj exhibits a hydra effect in the full system, then the system will
converge to either PR1,Nj

or PR2,Nj
. Note that for α < 1, Nj cannot exhibit a hydra

effect in the three-species subsystem (for α < 1). Thus, further increases in dj drive
the equilibrium density of Nj to zero, which then allows for the invasion of Nk.

Appendix E.4 Existence dependent on coexistence

In some regions of parameter space, one predator cannot coexist with either prey in
the absence of the other predator. As noted in the main text, in these cases there is
always at least one positive indirect effect when using comparisons of allopatric and
sympatric densities (method 3). Below we present the mathematical conditions for
when N1 cannot exist in the absence of N2 and vice versa. Note that the following
cannot occur under traditional resource partitioning.

N1 cannot exist in the absence of N2: This occurs when P4 exists and in the
R1,R2,N1-subspace (i) the PR2N1 equilibrium can be invaded by R1 and (ii) the equi-
librium point with only R1 present (r1/k1, 0, 0, 0) cannot be invaded by R2 or N1.
Note that together these conditions imply that PR1N1 and P3,N1 do not exist in
the positive orthant. The conditions on the parameters are b11c11r1/k1 − d1 < 0,
b12c12r2/k2 − d1 > 0, α/q > k1r2/k2r1, αq < k2r1/k1r2, α < 1 and

0 <
∂Ṙ1

∂R1

(PR2N1) = r1

(
1− d1k1

b12c12r1
αq

)
− c11r2

c12

(
1− d1k2

b12c12r2

)
(E3)

Since we need 0 < ∂Ṙ1

∂R1
(PR2N1), this phenomenon can only occur under defense-based

partitioning when N1 is more sensitive to prey defense (∆ > 0).
For the special case where N1 cannot attack the more defended prey (c11 = 0), the

above conditions simplify to c11 = b11c11 = 0, b12c12r2/k2 − d1 > 0, α/q > k1r2/k2r1,
αq < k2r1/k1r2, and α < 1. A particular parameter set satisfying these conditions is

r1 = k1 = 0.5; r2 = k2 = 0.6; c11 = 0; c12 = 1.5; c21 = 1.7; c22 = 1.8;

d1 = 0.54; d2 = 0.8;α = 0.98; q = 0.97
(E4)
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The result also holds for c11 < d1.

N2 cannot exist in the absence of N1: This occurs when P4 exists and in the
R1, R2, N2-subspace (i) the PR2N2 equilibrium can be invaded by R1 and (ii) the
equilibrium point (r1/k1, 0, 0, 0) cannot be invaded by R2 or N2. Note that together
these conditions imply that PR1N2 and P3,N2 do not exist in the positive orthant.
The conditions on the parameters are b21c21r1/k1 − d2 < 0, α/q > k1r2/k2r1, αq <
k2r1/k1r2, α < 1, and

0 <
∂Ṙ1

∂R1

(PR2N2) = r1

(
1− d2αqk1

b22c22r1

)
− c21r2

c22

(
1− d2k2

b22c22r2

)
. (E5)

Under the above conditions, (r1/k1, 0, 0, 0) is the only stable equilibrium in the
R1, R2, N2-subspace. This phenomenon only occurs under defense-based partition-
ing when N2 is more sensitive to prey defense (∆ < 0).

For the special case where N2 cannot attack the more defended prey (c21 = 0), the
above conditions simplify to c21 = b21c21 = 0, b22c22r2/k2 − d2 > 0, α/q > k1r2/k2r1,
αq < k2r1/k1r2, and α2 < 1. A particular numerical example is

r1 = k1 = 1.2; r2 = k2 = 3; c11 = 0.54; c12 = 1; c21 = 0; c22 = 2.4;

d1 = 0.44; d2 = 0.7;α = 0.94; q = 0.85
(E6)

The result also holds for positive c21, provided c21 ≤ 0.67.


