
Peter A. Abrams and Michael H. Cortez. 2015. The
many potential indirect interactions between

predators that share competing prey. Ecological
Monographs VOL: pp-pp.

Appendix C Effects of perturbations to predator

mortality rates for unequal predator

conversion efficiencies

Differentiating the N1 and N2 terms of P4 with respect to d1 and d2 yields four
equations that describe how small, controlled changes in the mortality rate of one
species alter the equilibrium densities of the two predators:

∂N∗
2

∂d1
=

1

∆∆̄
[b21c21(c11k2 − c12k1αq) + b22c22(c12k1 − c11k2α/q)] (C1)

∂N∗
1

∂d2
=

1

∆∆̄
[b12c12(c22k1 − c21k2αq) + b11c11(c21k2 − c22k1α/q)] (C2)

∂N∗
1

∂d1
=
−1

∆∆̄
[b21c21(c21k2 − c22k1αq) + b22c22(c22k1 − c21k2α/q)] (C3)

∂N∗
2

∂d2
=
−1

∆∆̄
[b11c11(c11k2 − c12k1αq) + b12c12(c12k1 − c11k2α/q)] . (C4)

Each derivative can be positive or negative. All sign combinations are possible except
for the case where all of the derivatives are positive; see theorem 1 below. Positive
signs for equations (C3) and (C4) imply that the respective species exhibits the hydra
effect. Note that because of the Lotka-Volterra form of our model, the right hand
sides of the above equations do not depend on d1 or d2.

The following subsections address the classification methods based on (i) the ef-
fects of mortality perturbations on the equilibrium density of heterospecifics and (ii)
those effects corrected for the effect on the perturbed species. The last subsection
addresses the effects of increases in non-selective mortality rates.

Theorem 1. Regions where ∂N∗
j /∂dk > 0 for all j, k cannot arise in system (1).
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Proof. For presentational purposes, in this proof we will use the notation αij to denote
the interspecific prey competition coefficients. Recall that α12 = αq and α21 = α/q.

Choose any parameter set. Let {α12, F∂N∗
j /∂dk

(α12)} denote the set of points where

∂N∗
j /∂dk = 0. The functions F∂N∗

j /∂dk
(α12) are defined by equations (C1) through

(C4). They are linear in α12. We make use of the differences

F∂N∗
1 /∂d1

(α12)− F∂N∗
2 /∂d1

(α12) =
k1∆

b22c22c11c21k2
(b22c22 − α12b21c21) (C5)

F∂N∗
2 /∂d2

(α12)− F∂N∗
1 /∂d2

(α12) =
k1∆

b12c12c11c21k2
(α12b11c11 − b12c12) . (C6)

Assume ∆ > 0 and ∆̄ > 0. For sufficiently small αij, we have that ∂N∗
1/∂d1 < 0,

∂N∗
1/∂d2 > 0, ∂N∗

2/∂d1 > 0, and ∂N∗
2/∂d2 < 0. Thus, points where ∂N∗

j /∂dk > 0
for all j, k can only arise if equations (C5) and (C6) are both positive. Note that
∆̄ > 0 implies b22c22/b21c21 < b12c12/b11c11, which implies 0 > α12 − b22c22/b21c21 >
α12 − b12c12/b11c11. Hence, equations (C5) and (C6) cannot both be positive for
the same value of α12. The proof for the case where ∆ < 0 and ∆̄ < 0 is similar.
While stable coexistence does not occur when ∆ and ∆̄ have opposite signs, a similar
argument shows that the result holds for that case as well.

Appendix C.1 Effects of mortality perturbations on the equi-
librium density of heterospecifics

The effects of small, controlled changes in the mortality rate of one species on the
equilibrium density of the other species are determined by equations (C3) and (C4).
For low levels of interspecific prey competition (α small), both equations are nega-
tive. As the level of interspecific prey competition increases, the derivatives increase.
Equations (C3) and (C4) switch sign, respectively, at

α1 = q
c11b21c21k2 + c12b22c22k1
c12b21c21k1q2 + c11b22c22k2

(C7)

α2 = q
c21b11c11k2 + c22b12c12k1
c21b12c12k2 + c22b11c11k1q2

. (C8)

Consider the case where the conversion efficiencies are equal (bji = 1), inter-
specific prey competition is symmetric (q = 1), and intraspecific competition is
equal (k1 = k2). In this case, the above values simplify to α1 = α2 = (c12c22 +
c11c21)/(c11c22 + c12c21). This was the value identified by Vandermeer (1980); below
the value the indirect interaction between predators is competition and above the
value the indirect interaction is mutualism. Under traditional resource partitioning,
this value is always less than 1. Thus, for sufficiently high and symmetric interspecific
prey competition, the indirect relationship will switch from competition to mutualism.
Under defense-based partitioning, the value is always greater than one. Hence, under
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defense-based partitioning, positive indirect interactions require some asymmetry in
prey interspecific or intraspecific competition. Because contramensalism cannot arise
if q = 1 and k1 = k2, these results suggest that contramensalism can arise when
bji = 1 only if there is asymmetry in interspecific or intraspecific prey competition.

Allowing for unequal conversion efficiencies (bji 6= 1) alters the above results.
When bji 6= 1, q = 1, and k1 = k2, the critical α values simplify to α1 = (b12c12c22 +
b11c11c21)/(b11c11c22 + b12c12c21) and α2 = (c12b22c22 + c11b21c21)/(c11b22c22 + c12b21c21).
Because the two critical values are not equal, contramensalism is possible when the
conversion efficiencies are not equal, even when prey competition is symmetric. Note
that cj1−cj2 and bj1cj1−bj2cj2 do not necessarily have the same sign. Indeed, different
signs are expected when the predators only coexist with one prey in allopatry and
have a sufficiently greater conversion efficiency for that prey. When cj1 − cj2 and
bj1cj1 − bj2cj2 have the same sign, the critical values are less than 1 for traditional
resource partitioning and greater than 1 for defense-based partitioning. This result is
the same as in the bji = 1 case and implies that positive indirect interactions are not
possible for defense-based partitioning. When cj1−cj2 and bj1cj1−bj2cj2 have opposite
signs, predators have higher conversion efficiencies on the prey that they attack at
a lower rate. In this case, it is possible that the critical values are greater than 1
for traditional resource partitioning and less than 1 for defense-based partitioning -
this is the opposite of the previous result. In total, our results imply that when prey
competition is symmetric (q = 1) and intraspecific competition is equal (k1 = k2), (i)
positive indirect effects occur under defense-based partitioning only if predators have
a much higher conversion efficiency on prey that they capture at a lower rate and (ii)
contramensalism only occurs if the predators have unequal conversion efficiencies or
if there is asymmetry in intra- or inter-specific prey competition.

In general, increasing the asymmetry in interspecific prey competition (q 6= 1)
will cause the derivatives (C1) and (C2) to decrease. Thus, increased asymmetry
promotes positive indirect interactions between the predators.

Appendix C.2 Effects of mortality perturbations controlled
for self effects

Predator species one and two exhibit hydra effects when equations (C3) and (C4),
respectively, are positive. When interspecific prey competition is sufficiently low (α
small), equations (C3) and (C4) are both negative, implying neither species exhibits
the hydra effect. As the level of interspecific competition increases, the derivatives
increase and respectively change sign at:

α3 = q
b21c

2
21k2 + b22c

2
22k1

c21c22(b21k1q2 + b22k2)
(C9)

α4 = q
b11c

2
11k2 + b12c

2
12k1

c11c12(b11k1q2 + b12k2)
(C10)
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Consider the case where the conversion efficiencies are equal (bji = 1), interspecific
prey competition is symmetric (q = 1), and intraspecific competition is equal (k1 =
k2). In this case the above critical values simplify to (c211 + c212)/2c11c12 and (c221 +
c222)/2c21c22. Both of these values are always greater than 1. Thus, hydra effects
cannot arise without some asymmetry in prey competition (q 6= 1 or k1 6= k2) or
different conversion efficiencies (bji different). If the conversion efficiencies are not
equal (but q = 1 and k1 = k2), then the critical values are less than one when
cj1− cj2 and bj1cj1− bj2cj2 have opposite signs. Thus, unequal conversion efficiencies
do allow for hydra effects when prey competition is symmetric and equal, provided
that the predators have higher conversion efficiencies for prey types for which they
have lower attack rates. Greater asymmetry in interspecific prey competition (q 6= 1)
increases the values of equations (C3) and (C4) regardless of the predator efficiencies
or the level of intraspecific competition. Thus, greater asymmetry in interspecific
prey competition promotes hydra effects. Also, hydra effects are more likely to occur
if b11 < b12 and/or k1 < k2 when q � 1 or if b11 > b12 and/or k1 > k2 when q � 1
since those combinations of values maximize the denominators of the above critical
values. In total, hydra effects are possible only when the predators have different
conversion efficiencies or prey interspecific competition is sufficiently asymmetric.

If one predator is a specialist, meaning it only captures one of the prey, then the
other predator cannot exhibit a hydra effect. For example, if predator N1 cannot
capture one of the two prey species (c11 = 0 or c12 = 0), then predator N2 cannot
exhibit a hydra effect. Similarly, if predator N2 cannot capture one of the two prey
species (c21 = 0 or c22 = 0), then predator N1 cannot exhibit a hydra effect (α3 > 1).
We note that if the predator can capture both prey, but only utilizes one, e.g., c11 > 0
and b11 = 0, then the other predator can exhibit hydra effects.

As noted in the main text, correcting for hydra effects can change the inferred
indirect interaction between predators. Taking the appropriate ratios of equations
(C1) through (C4) yields

dN∗
1

dN∗
2

=

(
∂N∗

1

∂d2

)/(
∂N∗

2

∂d2

)
=
−k1c22(b12c12 − b11c11αq)− k2c21(b11c11 − b12c12α/q)
k2c11(b11c11 − b12c12α/q) + k1c12(b12c12 − b11c11αq)

(C11)

dN∗
2

dN∗
1

=

(
∂N∗

2

∂d1

)/(
∂N∗

1

∂d1

)
=
−k1c12(b22c22 − b21c21αq)− k2c11(b21c21 − b22c22α/q)
k2c21(b21c21 − b22c22α/q) + k1c22(b22c22 − b21c21αq)

.

(C12)

Note that setting the conversion rates equal yields equations (6) and (7) of the main
text. Also note that the inferred interactions for each region of parameter space in
Table 1 of the main text are the same for the bji = 1 and bji 6= 1 cases. The derivatives
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(C11) and (C12) switch signs, respectively, at the critical values

α5 =
c21b11c11k2 + c22b12c12k1

c22b11c11k1q + c21b12c12k2/q
(C13)

α6 =
c11b21c21k2 + c12b22c22k1

c12b21c21k1q + c11b22c22k2/q
, (C14)

respectively.
As noted in the main text, if the conversion efficiencies are equal (bji = 1), in-

terspecific prey competition is symmetric (q = 1), and intraspecific competition is
equal (k1 = k2), then the derivatives (C11) and (C12) switch signs at the same value:
α = (c12c22 + c11c21)/(c11c22 + c12c21). Note that under defense-based resource par-
titioning, the critical value of α is always greater than 1. Due to the similarity of
the terms in the numerators and denominators of equations (C11) and (C12), both
derivatives tend to be negative when interspecific prey competition is high (α ≈ 1)
and highly asymmetric (q � 1 or q � 1), regardless of the level of intraspecific
competition or the conversion efficiencies. The same holds for very low levels of inter-
specific prey competition (α ≈ 0). Thus, positive indirect effects between predators
are promoted at intermediate levels of asymmetry in interspecific prey competition.

Asymmetry in intraspecific prey competition (k1 6= k2) can also influence the
sign of the interaction, though to a lesser extent than asymmetry in interspecific
prey competition. To see this, consider the case where interspecific competition is
symmetric and complete (q = 1 and α = 1). In this case the derivatives simplify to

dN1

dN2

=
c22k1 − c21k2
c11k2 − c12k1

;
dN2

dN1

=
c12k1 − c11k2
c21k2 − c22k1

. (C15)

Note that in this special case the derivatives are inverses, implying they have the same
sign. Mutually positive indirect effects occur when either c11/c12 < k1/k2 < c21/c22 or
c11/c12 > k1/k2 > c21/c22. Mutually negative indirect effects occur when one of the
inequalities in either expression is reversed. The inequalities specify that the ratio
of the strength of prey one’s intraspecific competition to that of prey two (k1/k2)
lies between the ratios of the each predator’s capture rates. Note that only the
second expression can be satisfied under traditional resource partitioning and that
only the first expression can be satisfied under defense-based partitioning. While the
range of k1/k2 values yielding mutually positive indirect effects is narrow when the
two predators have similar ratios of capture rates, the range of predator parameters
allowing coexistence is also narrow under those circumstances. When predators differ
sufficiently in their capture rates to allow coexistence over a wide range of their
demographic parameters (e.g., bji, dji), there is also a wide range of k1/k2 values that
allow mutually positive indirect interactions.
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Appendix C.3 Relation to Chesson and Kuang (2008) ap-
proach

The indirect interactions inferred using methods 1 and 2 (which represent changes
in equilibrium density) are very closely related to the competition coefficients (which
represent effects on per capita growth rates) derived using the methods developed in
MacArthur (1970) and Chesson and Kuang (2008). Here we show that connection.

The approach developed in MacArthur (1970) and Chesson and Kuang (2008)
assumes that the dynamics of the prey (R1, R2) are much faster than the dynamics of
the predators (N1, N2). In this fast-slow limit, the prey dynamics tend to equilibrium
very quickly and respond nearly instantaneously to changes in the predator densities.
Mathematically, the dynamics of the fast-slow system are determined by setting the
right hand sides of the dR1/dt and dR2/dt equations of model (1) equal to zero,
solving for R1 and R2, and substituting the values of R1 and R2 into the dN1/dt and
dN2/dt equations of model (1). This results in a two-species Lotka-Volterra model,

dN1

dt
= N1(β1 + σ11N1 + σ12N2) (C16)

dN2

dt
= N2(β2 + σ21N1 + σ22N2). (C17)

The intraspecific and interspecific predator competition coefficients in model (C16)
are related to the derivatives (C1) through (C4) of model (1) in the following way

σ11 =
∂N∗

2

∂d2

∆∆̄

k1k2(1− α2)

σ12 =
∂N∗

1

∂d2

−∆∆̄

k1k2(1− α2)

σ21 =
∂N∗

2

∂d1

−∆∆̄

k1k2(1− α2)

σ22 =
∂N∗

1

∂d1

∆∆̄

k1k2(1− α2)
.

(C18)

The βi are given by

β1 =
b11c11(k2r1 − k1r2αq) + b12c12(k1r2 − k2r2α/q)

k1k2(1− α2)
− d1

β2 =
b21c21(k2r1 − k1r2αq) + b22c22(k1r2 − k2r2α/q)

k1k2(1− α2)
− d2.

(C19)

The relations between the interspecific competition coefficients in model (C16) and
the derivatives (C1) and (C2) of model (1) imply that the indirect effects measured
using method 1 are proportional to the direct effects predators have on each other’s per
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capita growth rate in model (C16). The ratios σ12/σ11 and σ21/σ22 are the traditional
relative interaction coefficients for the Lotka-Volterra model (C16). These ratios are
identical to the indirect effects measured using method 2.

In total, the derivatives (C1) through (C4) of model (1) that define the indirect
effects measured using methods 1 and 2 can be interpreted as interspecific and in-
traspecific competition coefficients of a two-species Lotka-Volterra model where the
predators have direct effects on each other. We note though that while this approach
can be helpful in interpreting the signs and magnitudes of the derivatives, the fast
prey dynamics assumption may not be appropriate in many cases, particularly those
where the four-species model (1) exhibits cyclic dynamics.

Appendix C.4 Non-selective mortality perturbations

We are interested in the effects of small, controlled increases in indiscriminate mortal-
ity on the total equilibrium density of the top trophic level, Ntot = N∗

1 +N∗
2 . For each

species, we can write dj = d+ δj where d is the mortality rate due to indiscriminate
mortality in the system and δj is the mortality rate due to species specific factors.
The response of the total equilibrium density of the trophic level to changes in the
indiscriminate mortality rate is given by

∂Ntot

∂d
=
∂N∗

2

∂d1
+
∂N∗

1

∂d2
+
∂N∗

1

∂d1
+
∂N∗

2

∂d2

=
1

∆∆̄
[k1(c12 − c22)(b11c11 − b21c21)αq + k2(c11 − c21)(b12c12 − b22c22)α/q]

+
1

∆∆̄
[−k2(c11 − c21)(b11c11 − b21c21)− k1(c12 − c22)(b12c12 − b22c22)] (C20)

which is the sum of equations (C1) through (C4). When equation (C20) is positive,
the total predator equilibrium density increases as indiscriminate mortality increases,
i.e., there is a trophic-level hydra effect.

In general, a trophic-level hydra effect does not imply hydra effects in each species
individually. Conversely, when both predators exhibit hydra effects due to species-
specific mortality, their summed equilibrium densities need not increase with greater
indiscriminate mortality. A particular numerical example illustrating the above is the
parameter set {r1 = r2 = k1 = k2 = 1, c11 = 0.5, c12 = 1.5, c21 = 1.5, c22 = 2, d1 =
0.25, d2 = 0.5, q = 5}. Because cycles occur for α > 0.408, we focus on average preda-
tor densities. For α < 0.48077, increased indiscriminate mortality causes the total
predator equilibrium density to decrease. For α > 0.48077, the total predator equilib-
rium density increases. For α > 0.246305, predator one increases with indiscriminate
mortality whereas for α < 0.16556 predator two increases. The trophic-level hydra
effect occurs for large α because the increase in predator one is greater than the de-
crease in predator two. For predator-specific mortality perturbations, predator one
increases with its own mortality rate for α > 0.40064 and predator two increases with
its own mortality rate for α > 0.64103.
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Trophic-level hydra effects can occur under traditional or defense-based partition-
ing. When a trophic-level hydra effects occurs under defense-based partitioning, then
it is possible for both or only one predator species to increase in abundance. In the lat-
ter case, the equilibrium density of one species increases and the equilibrium density
of the other decreases, but the total number of predators increases. In contrast, when
a trophic-level hydra effect occurs in a system with traditional resource partitioning,
it is always that case that the equilibrium densities of the two predators change in
opposite directions. For example, consider the parameter values: r1 = k1 = 1.9,
r2 = k2 = 5.5, c11 = 4.8, c12 = 4.1, c21 = 6.6, c22 = 7.5, d1 = 3.6, d2 = 6.4, α12 = 0.68,
α21 = 0.96. In this case with traditional resource partitioning, a trophic-level hydra
effect occurs and the equilibrium density of predator 1 increases whereas the equi-
librium density of predator 2 decreases. Stated mathematically, our general result
is that with traditional resource partitioning it is not possible for

∂N∗
1

∂d1
+

∂N∗
1

∂d2
and

∂N∗
2

∂d1
+

∂N∗
2

∂d2
to both be positive; see the proof below.

Theorem 2. Assume c22−c21 > 0, c11−c12 > 0, b22c22−b12c12 > 0, b11c11−b21c21 > 0,
and ∆, ∆̄ < 0. Then

∂N∗
1

∂d1
+

∂N∗
1

∂d2
and

∂N∗
2

∂d1
+

∂N∗
2

∂d2
cannot both be positive.

Proof. For presentational purposes, in this proof we will use the notation αij to denote
the interspecific prey competition coefficients. Recall that α12 = αq and α21 = α/q.

Solving the inequalities ∂N∗
1/∂d1 + ∂N∗

1/∂d2 > 0 and ∂N∗
2/∂d1 + ∂N∗

2/∂d2 > 0
for α21 yields

α21 <
k1c22(b22c22 − b12c12) + (b21c21 − b11c11)(k2c21 − k1c22α12)

k2c21(b22c22 − b12c12)
if

k2c21(b22c22 − b12c12)
∆∆̄

< 0

α21 >
k1c22(b22c22 − b12c12) + (b21c21 − b11c11)(k2c21 − k1c22α12)

k2c21(b22c22 − b12c12)
if

k2c21(b22c22 − b12c12)
∆∆̄

> 0

(C21)

α21 >
(b11c11 − b21c21)(α12c12k1 − k2c11) + c12k1(b22c22 − b12c12)

c11k2(b22c22 − b12c12)
if

k2c11(b22c22 − b12c12)
∆∆̄

< 0

α21 <
(b11c11 − b21c21)(α12c12k1 − k2c11) + c12k1(b22c22 − b12c12)

c11k2(b22c22 − b12c12)
if

k2c11(b22c22 − b12c12)
∆∆̄

> 0.

(C22)

Combining the first lines of equations (C21) and (C22) and combining the second
lines of those equations yields, respectively,

α12 <
b22c22 − b12c12
b21c21 − b11c11

if 0 <
k1∆(b11c11 − b21c21)

c11k2c21(b12c12 − b22c22)

α12 >
b22c22 − b12c12
b21c21 − b11c11

if 0 >
k1∆(b11c11 − b21c21)

c11k2c21(b12c12 − b22c22)
.

(C23)

In the following we set α12 = (b22c22 − b12c12)/(b21c21 − b11c11) + ε.
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We assume ∆, ∆̄ < 0 and (b22c22 − b12c12) > 0. Substitution into the appropriate
conditions from equations (C21) and (C22) yields

c22k1(b11c11 − b21c21)
c21k2(b22c22 − b12c12)

ε+
b21c21 − b11c11
b22c22 − b12c12

< α21 <
c12k1
c11k2

(b11c11 − b21c21)
(b22c22 − b12c12)

ε+
(b11c11 − b21c21)
(b12c12 − b22c22)

.

(C24)
In the traditional resource partitioning case we have that b22c22− b12c12 > 0, b11c11−
b21c21 > 0, ∆̄ < 0, and ∆ < 0. Via the first line of equation (C23), ε < 0, which implies
that the right hand side of equation (C24) is always negative. Hence inequalities (C21)
and (C22) cannot both be satisfied.
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