Peter A. Abrams and Michael H. Cortez. 2015. The many potential indirect interactions between predators that share competing prey. Ecological Monographs VOL: pp-pp.

Appendix B Locations and stabilities of the equilibrium points

Let $P_{R_{1} R_{2}}$ denote the coexistence equilibrium of the subsystem where only R_{1} and R_{2} are present (assuming it exists). Let $P_{R_{i} N_{j}}$ denote the coexistence equilibrium of the subsystem where only R_{i} and N_{j} are present. Let $P_{3, N_{j}}$ denote the coexistence equilibrium of the subsystem where only R_{1}, R_{2} and N_{j} are present (assuming it exists). Let P_{4} denote the coexistence equilibrium where the densities of all four species are positive. We refer to $P_{R_{1} R_{2}}, P_{R_{i} N_{j}}$, and $P_{3, N_{j}}$ as boundary equilibria. In the following, we denote the entries of the two-species equilibria using overbars (e.g., \bar{R}_{1}), the entries of the three-species equilibria using hats (e.g., \hat{R}_{1}), and the entries of the four species equilibria using asterisks (e.g., R_{1}^{*}).

Appendix B. 1 Definition and stability of the two-species equilibria

There are five two-species equilibria. To be biologically relevant the equilibrium densities of both species must be positive. The boundary equilibrium where R_{1} and R_{2} coexist is

$$
\begin{equation*}
P_{R_{1} R_{2}}=\left\{\bar{R}_{1}, \bar{R}_{2}\right\}=\left\{\frac{1}{1-\alpha^{2}}\left(\frac{r_{1}}{k_{1}}-\frac{r_{2} \alpha q}{k_{2}}\right), \frac{1}{1-\alpha^{2}}\left(\frac{r_{2}}{k_{2}}-\frac{r_{1} \alpha / q}{k_{1}}\right)\right\} . \tag{B1}
\end{equation*}
$$

This equilibrium can be invaded by N_{j} if $0<b_{j 1} c_{j 1} \bar{R}_{1}+b_{j 2} c_{j 2} \bar{R}_{2}-d_{j}$ where \bar{R}_{i} is the equilibrium density of R_{i} at $P_{R_{1} R_{2}}$.

The four remaining two-species equilibria each involve one predator species and one prey species. The boundary equilibrium where R_{i} and N_{j} coexist is

$$
\begin{equation*}
P_{R_{i} N_{j}}=\left\{\bar{R}_{i}, \bar{N}_{j}\right\}=\left\{\frac{d_{j}}{b_{j i} c_{j i}}, \frac{r_{i}}{c_{j i}}\left[1-\frac{d_{j} k_{i}}{b_{j i} c_{j i} r_{i}}\right]\right\} . \tag{B2}
\end{equation*}
$$

Table B1: Stability conditions for two-species boundary equilibria

Eq.	Stability Condition (prey invasion)	Resource Partitioning	
	(predator invasion)	$\Delta, \bar{\Delta}>0$	$\bar{\Delta}, \Delta<0$
$P_{R_{1} N_{1}}$	$r_{2}\left(1-\frac{d_{1} k_{2}}{b_{11} c_{11} r_{2}} \alpha / q\right)-\frac{c_{12} r_{1}}{c_{11}}\left(1-\frac{d_{1} k_{1}}{b_{11} c_{11} r_{1}}\right)$	\pm	+
$b_{21} c_{21} d_{1}-b_{11} c_{11} d_{2}$	+	-	
	$r_{1}\left(1-\frac{d_{1} c_{1}}{b_{12} c_{1} r_{1}} \alpha q\right)-\frac{c_{11} r_{2}}{c_{12}}\left(1-\frac{d_{1} k_{2}}{b_{12} c_{12} r_{2}}\right)$	+	\pm
$b_{R_{2} N_{1}}$		-	+
	$r_{22} d_{1}-b_{12} c_{12} d_{2}$		+
$P_{R_{2} N_{2}}$	$r_{1}\left(1-\frac{d_{2} k_{1}}{b_{22} c_{2} r_{1}} \alpha q\right)-\frac{c_{21} r_{2}}{c_{22}}\left(1-\frac{d_{2} k_{2}}{b_{22} c_{2} r_{2}}\right)$	\pm	+
	$b_{12} c_{12} d_{2}-b_{22} c_{22} d_{1}$	+	-
$P_{R_{1} N_{2}}$	$r_{2}\left(1-\frac{d_{2} k_{2}}{b_{21} c_{21} r_{2}} \alpha / q\right)-\frac{c_{22} r_{1}}{c_{21}}\left(1-\frac{d_{2} k_{1}}{b_{21} c_{21} r_{1}}\right)$	+	\pm
	$b_{11} c_{11} d_{2}-b_{21} c_{21} d_{1}$	-	+

Legend: + can invade, - cannot invade, and \pm invasion depends on parameters

Let N_{k} and R_{h} denote the two species not present at $P_{R_{i} N_{j}} . N_{k}$ can invade if

$$
\begin{equation*}
b_{k i} c_{k i} d_{j}-b_{j i} c_{j i} d_{k}>0 \tag{B3}
\end{equation*}
$$

R_{h} can invade if

$$
\begin{equation*}
r_{h}\left(1-\frac{d_{j} k_{h}}{b_{j i} c_{j i} r_{h}} \alpha_{h i}\right)-\frac{c_{j h} r_{i}}{c_{j i}}\left(1-\frac{d_{j} k_{i}}{b_{j i} c_{j i} r_{i}}\right)>0 . \tag{B4}
\end{equation*}
$$

The stabilities of the four 1-predator,1-prey equilibria are shown in Table B1. Note that the stabilities depend on the signs of Δ and $\bar{\Delta}$. In Table B1, + implies invasion by that species is possible, - implies invasion is not possible by that species, and \pm implies either outcome is possible.

Note that if both of the above two inequalities are reversed for a particular the 1-predator,1-prey equilibrium, then that equilibrium cannot be invaded. It is possible to choose parameter values such that there are two uninvasible 1-predator,1-prey equilibria. This occurs in two cases: (i) all invasion conditions for $P_{R_{1} N_{1}}$ and $P_{R_{2} N_{2}}$ are negative or (ii) all invasion conditions for $P_{R_{1} N_{2}}$ and $P_{R_{2} N_{1}}$ are negative. In both cases the system exhibits bistability and four-species coexistence is not possible.

Appendix B. 2 Definition and stability of the three-species equilibria

There are two three-species equilibria. The equilibrium where R_{1}, R_{2} and N_{j} coexist is

$$
\begin{align*}
& P_{3, N_{j}}=\left\{\hat{R}_{1}, \hat{R}_{2}, \hat{N}_{j}\right\}=\left\{\frac{c_{j 2}\left(r_{1} b_{j 2} c_{j 2}-d_{j} k_{1} \alpha q\right)-c_{j 1}\left(r_{2} b_{j 2} c_{j 2}-d_{j} k_{2}\right)}{c_{j 1} k_{2}\left(b_{j 1} c_{j 1}-b_{j 2} c_{j 2} \alpha / q\right)+c_{j 2} k_{1}\left(b_{j 2} c_{j 2}-b_{j 1} c_{j 1} \alpha q\right)},\right. \\
& \frac{c_{j 1}\left(r_{2} b_{j 1} c_{j 1}-d_{j} k_{2} \alpha / q\right)-c_{j 2}\left(r_{1} b_{j 1} c_{j 1}-d_{j} k_{1}\right)}{c_{j 1} k_{2}\left(b_{j 1} c_{j 1}-b_{j 2} c_{j 2} \alpha / q\right)+c_{j 2} k_{1}\left(b_{j 2} c_{j 2}-b_{j 1} c_{j 1} \alpha q\right)}, \\
&\left.\frac{r_{2} k_{1}\left(b_{j 2} c_{j 2}-b_{j 1} c_{j 1} \alpha q\right)+r_{1} k_{2}\left(b_{j 1} c_{j 1}-b_{j 2} c_{j 2} \alpha / q\right)-k_{1} k_{2} d_{j}\left(1-\alpha^{2}\right)}{c_{j 1} k_{2}\left(b_{j 1} c_{j 1}-b_{j 2} c_{j 2} \alpha / q\right)+c_{j 2} k_{1}\left(b_{j 2} c_{j 2}-b_{j 1} c_{j 1} \alpha q\right)}\right\} . \tag{B5}
\end{align*}
$$

We denote the denominator of the entries of $P_{3, N_{j}}$ by $\sigma_{j}=c_{j 1} k_{2}\left(b_{j 1} c_{j 1}-b_{j 2} c_{j 2} \alpha / q\right)+$ $c_{j 2} k_{1}\left(b_{j 2} c_{j 2}-b_{j 1} c_{j 1} \alpha q\right)$. As shown in appendix D , stable coexistence of all three species occurs when $\sigma_{j}>0$ and $\alpha<1$. If $\sigma_{j}<0$, then stable coexistence is not possible because $P_{3, N_{j}}$ is a saddle with one eigenvalue with positive real part. $P_{3, N_{j}}$ can be invaded by the predator not present at equilibrium, N_{k}, if

$$
\begin{equation*}
b_{k 1} c_{k 1} \hat{R}_{1}+b_{k 2} c_{k 2} \hat{R}_{2}-d_{k}>0 \tag{B6}
\end{equation*}
$$

Appendix B. 3 Definition and stability of the four-species equilibrium

The four-species coexistence equilibrium is

$$
\begin{aligned}
P_{4}=\{ & \left.R_{1}^{*}, R_{2}^{*}, N_{1}^{*}, N_{2}^{*}\right\}=\left\{\frac{b_{12} c_{12} d_{2}-b_{22} c_{22} d_{1}}{\bar{\Delta}}, \frac{b_{21} c_{21} d_{1}-b_{11} c_{11} d_{2}}{\bar{\Delta}},\right. \\
& \frac{r_{2} c_{21}-r_{1} c_{22}}{\Delta}+\frac{c_{22} k_{1}-c_{21} k_{2} \alpha / q}{\Delta} R_{1}^{*}-\frac{c_{21} k_{2}-c_{22} k_{1} \alpha q}{\Delta} R_{2}^{*}, \\
& \left.\frac{r_{1} c_{12}-r_{2} c_{11}}{\Delta}+\frac{c_{11} k_{2}-c_{12} k_{1} \alpha q}{\Delta} R_{2}^{*}-\frac{c_{12} k_{1}-c_{11} k_{2} \alpha / q}{\Delta} R_{1}^{*}\right\} .
\end{aligned}
$$

Each N_{j} entry of P_{4} is positive if (1) the other three species can coexist (i.e., $P_{3, N_{k}}$ has positive entries and $\sigma_{k}>0$) and the three-species subsystem can be invaded by N_{j} or (2) N_{j} can invade one of the two-species equilibria at which it is absent, e.g., N_{1} can invade $P_{R_{1}, N_{2}}$ or $P_{R_{2}, N_{2}}$. The proof of this statement follows.
Theorem 1. Assume Δ and $\bar{\Delta}$ have the same sign.
(i) If $P_{3, N_{2}}$ has positive entries, $\sigma_{2}>0$, and N_{1} can invade $P_{3, N_{2}}$, then the N_{1} entry of P_{4} is positive. Similarly, if $P_{3, N_{1}}$ has positive entries, $\sigma_{1}>0$, and N_{2} can invade $P_{3, N_{1}}$, then the N_{2} entry of P_{4} is positive.
(ii) Assume $P_{R_{i} N_{j}}$ has positive entries for all i and j. All entries of P_{4} are positive only if N_{1} can invade $P_{R_{i} N_{2}}$ and N_{2} can invade $P_{R_{h} N_{1}}$ for $i \neq h$.

Proof. Proof of (i): We will prove the statement for the N_{1} entry. The proof for the N_{2} entry is nearly identical. Denote the condition for N_{1} to invade $P_{3, N_{2}}$, i.e., the left hand side of equation (B6), by C_{1}. Note that $C_{1}=N_{2}^{*} \Delta \bar{\Delta} \sigma_{2}$ where N_{2}^{*} is the equilibrium density of N_{2} at P_{4}. Since we assume Δ and $\bar{\Delta}$ have the same sign, $\sigma_{2}>0$, and $P_{3, N_{2}}$ has positive entries, C_{1} and N_{2} have the same sign. Hence, invasion $\left(C_{1}>0\right)$ implies $N_{2}^{*}>0$.

Proof of (ii) We will prove the result by way of a proof by contradiction. Via Table B1, we have that if N_{1} can invade $P_{R_{2} N_{2}}$ then N_{2} cannot invade $P_{R_{2} N_{1}}$. Similarly, if N_{1} can invade $P_{R_{1} N_{2}}$ then N_{2} cannot invade $P_{R_{1} N_{1}}$. Assume the entries of P_{4} are positive and N_{1} can invade both $P_{R_{1} N_{2}}$ and $P_{R_{2} N_{2}}$. This implies that $A_{1}=$ $\left(b_{12} c_{12} d_{2}-d_{1} b_{22} c_{22}\right)>0$ and $A_{2}=\left(b_{11} c_{11} d_{2}-b_{21} c_{21} d_{1}\right)>0$. Because $R_{1}^{*}=A_{1} / \bar{\Delta}$ and $R_{2}^{*}=-A_{2} / \bar{\Delta}$, it must be the case that either R_{1}^{*} or R_{2}^{*} is negative, which contradicts our assumption that P_{4} has positive entries. Via an identical argument, if N_{1} can invade both $P_{R_{1} N_{2}}$ and $P_{R_{2} N_{2}}$, then either R_{1}^{*} or R_{2}^{*} is negative.

Equilibrium Stability: We now present some limited results about the stability of P_{4}. Figure 4 of the main text shows the locations of the Hopf bifurcation curves for the numerical examples in Figures 1 and 2. Our two main findings are that (1) fourspecies coexistence is not possible if Δ and $\bar{\Delta}$ have opposite signs and (2) cycles are more likely to occur when interspecific prey competition is sufficiently high (α close to one) and asymmetric $(q \neq 1)$. We also show that stable coexistence is guaranteed when $b_{11} / b_{21}=b_{12} / b_{22}$ and α is sufficiently small.

The Jacobian evaluated at P_{4} is

$$
\left.J\right|_{P_{4}}=\left(\begin{array}{cccc}
-R_{1}^{*} k_{1} & -R_{1}^{*} k_{1} \alpha q & -c_{11} R_{1}^{*} & -c_{21} R_{1}^{*} \tag{B7}\\
-R_{2}^{*} k_{2} \alpha / q & -R_{2}^{*} k_{2} & -c_{12} R_{2}^{*} & -c_{22} R_{2}^{*} \\
b_{11} c_{11} N_{1}^{*} & b_{12} c_{12} N_{1}^{*} & 0 & 0 \\
b_{21} c_{21} N_{2}^{*} & b_{22} c_{22} N_{2}^{*} & 0 & 0
\end{array}\right) .
$$

The determinant of the Jacobian is $N_{1}^{*} N_{2}^{*} R_{1}^{*} R_{2}^{*} \Delta \bar{\Delta}$. Stable or cyclic coexistence of all species only occurs in our Lotka-Volterra model when the determinant of the Jacobian is positive. Consequently, coexistence is not possible if Δ and $\bar{\Delta}$ have opposite signs. When Δ and $\bar{\Delta}$ have the same sign, stable or cyclic coexistence are possible.

The characteristic polynomial for the Jacobian is

$$
\begin{equation*}
p(\lambda)=\lambda^{4}+a_{1} \lambda^{3}+a_{2} \lambda^{2}+a_{3} \lambda+a_{4} \tag{B8}
\end{equation*}
$$

where

$$
\begin{align*}
a_{1} & =k_{1} R_{1}^{*}+k_{2} R_{2}^{*} \\
a_{2} & =R_{1}^{*} R_{2}^{*} k_{1} k_{2}\left(1-\alpha^{2}\right)+N_{1}^{*} R_{1}^{*} b_{11} c_{11}^{2}+N_{1}^{*} R_{2}^{*} b_{12} c_{12}^{2}+N_{2}^{*} R_{1}^{*} b_{21} c_{21}^{2}+N_{2}^{*} R_{2}^{*} b_{22} c_{22}^{2} \\
a_{3} & =-R_{1}^{*} R_{2}^{*} \alpha\left(k_{1} q+k_{2} / q\right)\left(N_{1}^{*} b_{11} c_{11} c_{12}+N_{2}^{*} b_{21} c_{21} c_{22}\right) \\
& +R_{1}^{*} R_{2}^{*}\left(N_{1}^{*} k_{2} b_{11} c_{11}^{2}+N_{1}^{*} k_{1} b_{12} c_{12}^{2}+N_{2}^{*} k_{1} b_{22} c_{22}^{2}+N_{2}^{*} k_{2} b_{21} c_{21}^{2}\right) \\
a_{4} & =N_{1}^{*} N_{2}^{*} R_{1}^{*} R_{2}^{*} \Delta \bar{\Delta} . \tag{B9}
\end{align*}
$$

The number of roots with positive real part is given by the number of sign changes in the sequence $\left\{A_{0}, A_{1}, A_{2}, A_{3}, A_{4}\right\}$ where $A_{0}=1, A_{1}=a_{1}, A_{2}=a_{1}\left(a_{1} a_{2}-a_{3}\right)$, $A_{3}=\left(a_{1} a_{2}-a_{3}\right)\left(a_{1} a_{2} a_{3}-a_{3}^{2}-a_{1}^{2} a_{4}\right)$, and $A_{4}=a_{4}$. By inspection, A_{0}, and A_{1} are positive. A_{2} is positive under our assumption that $\alpha \leq 1$. A_{4} has the same sign as $\Delta \bar{\Delta}$, which is positive since we assume Δ and $\bar{\Delta}$ have the same sign. Thus, the occurrence of cycles is determined by the sign of A_{3} : cycles arise when A_{3} is negative and stable coexistence occurs when A_{3} is positive. After collecting powers of α and q, we have

$$
\begin{equation*}
a_{1} a_{2} a_{3}-a_{3}^{2}-a_{1}^{2} a_{4}=\left(c_{1}+c_{2}\right) \alpha^{3}-c_{3} \alpha^{2}-c_{4} \alpha^{2} q^{2}-c_{5} \alpha^{2} q^{-2}+\left(c_{6}+c_{7}\right) \alpha+c_{8} \tag{B10}
\end{equation*}
$$

where c_{i} is positive for $i \leq 5 ; c_{1}=O(q) ; c_{2}=O\left(q^{-1}\right) ; c_{3}, c_{4}, c_{5}$, and c_{8} do not depend on α or $q ; c_{6}=O(q)$; and $c_{7}=O\left(q^{-1}\right)$. The signs of the $O\left(\alpha^{2} q^{2}\right)$ and $O\left(\alpha^{2} q^{-2}\right)$ terms in equation (B10) suggest that cycles will arise when interspecific prey competition is sufficiently high (α is close to one) and sufficiently asymmetric (q is sufficiently larger or smaller than 1).

Using a Lyapunov function, we now show that stable coexistence is guaranteed if $b_{11} / b_{21}=b_{12} / b_{22}$ and $\alpha<2 q \sqrt{b_{11} c_{11} b_{12} c_{12} k_{1} k_{2}} /\left(c_{11} b_{11} k_{1} q^{2}+c_{12} b_{12} k_{2}\right)$.
Theorem 2. If $b_{11} / b_{21}=b_{12} / b_{22}$, then P_{4} is globally Lyapunov stable when

$$
\begin{equation*}
\left(b_{12} k_{2} \alpha / q+b_{11} k_{1} \alpha q\right)^{2}-4 b_{12} b_{11} k_{1} k_{2}<0 . \tag{B11}
\end{equation*}
$$

Proof. Let $P_{4}=\left(R_{1}^{*}, R_{2}^{*}, N_{1}^{*}, N_{2}^{*}\right)$. Our Lyapunov function is

$$
\begin{align*}
V\left(R_{1}, R_{2}, N_{1}, N_{2}\right) & =c_{1}\left[R_{1}-R_{1}^{*}-R_{1}^{*} \ln \left(R_{1}\right)+R_{1}^{*} \ln \left(R_{1}^{*}\right)\right] \\
& +c_{2}\left[R_{2}-R_{2}^{*}-R_{2}^{*} \ln \left(R_{2}\right)+R_{2}^{*} \ln \left(R_{2}^{*}\right)\right] \\
& +c_{3}\left[N_{1}-N_{1}^{*}-N_{1}^{*} \ln \left(N_{1}\right)+N_{1}^{*} \ln \left(N_{1}^{*}\right)\right] \tag{B12}\\
& +c_{4}\left[N_{2}-N_{2}^{*}-N_{2}^{*} \ln \left(N_{1}\right)+N_{2}^{*} \ln \left(N_{2}^{*}\right)\right]
\end{align*}
$$

for some constants $c_{i}>0$. Note that $V\left(R_{1}, R_{2}, N_{1}, N_{2}\right) \geq 0$ for all positive values of R_{1}, R_{2}, N_{1}, and N_{2} and equality holds only at P_{4}. Since $d R_{i} / d t\left(P_{4}\right)=0$ and $d N_{j} / d t\left(P_{4}\right)=0$, we can write $d V / d t$ as

$$
\begin{align*}
\frac{d V}{d t} & =c_{1}\left(R_{1}-R_{1}^{*}\right)\left[\frac{d R_{1}}{d t}-\frac{d R_{1}}{d t}\left(P_{4}\right)\right]-c_{2}\left(R_{2}-R_{2}^{*}\right)\left[\frac{d R_{2}}{d t}-\frac{d R_{2}}{d t}\left(P_{4}\right)\right] \tag{B13}\\
& -c_{3}\left(N_{1}-N_{1}^{*}\right)\left[\frac{d N_{1}}{d t}-\frac{d N_{1}}{d t}\left(P_{4}\right)\right]-c_{4}\left(N_{2}-N_{2}^{*}\right)\left[\frac{d N_{2}}{d t}-\frac{d N_{2}}{d t}\left(P_{4}\right)\right] .
\end{align*}
$$

After algebraic manipulation we have

$$
\begin{align*}
\frac{d V}{d t} & =-c_{1} k_{1}\left(R_{1}-R_{1}^{*}\right)^{2}-c_{2} k_{2}\left(R_{2}-R_{2}^{*}\right)^{2}-\left(c_{2} k_{2} \alpha / q+c_{1} k_{1} \alpha q\right)\left(R_{1}-R_{1}^{*}\right)\left(R_{2}-R_{2}^{*}\right) \\
& +\left(R_{1}-R_{1}^{*}\right)\left(N_{1}-N_{1}^{*}\right)\left(c_{3} b_{11} c_{11}-c_{1} c_{11}\right)+\left(R_{1}-R_{1}^{*}\right)\left(N_{2}-N_{2}^{*}\right)\left(c_{4} b_{21} c_{21}-c_{1} c_{21}\right) \\
& +\left(R_{2}-R_{2}^{*}\right)\left(N_{1}-N_{1}^{*}\right)\left(c_{3} b_{12} c_{12}-c_{2} c_{12}\right)+\left(R_{2}-R_{2}^{*}\right)\left(N_{2}-N_{2}^{*}\right)\left(c_{4} b_{22} c_{22}-c_{2} c_{22}\right) \tag{B14}
\end{align*}
$$

The terms in the bottom two lines are zero when the coefficients c_{i} satisfy

$$
\begin{equation*}
\frac{c_{3}}{c_{4}}=\frac{b_{11}}{b_{21}}=\frac{b_{12}}{b_{22}}, \quad c_{1}=b_{11} c_{3}, \quad c_{2}=b_{12} c_{3} . \tag{B15}
\end{equation*}
$$

Recall that we assume $b_{11} / b_{21}=b_{12} / b_{22}$. Setting $c_{3}=1$ yields
$\frac{d V}{d t}=-b_{11} k_{1}\left(R_{1}-R_{1}^{*}\right)^{2}-b_{12} k_{2}\left(R_{2}-R_{2}^{*}\right)^{2}-\left(b_{12} k_{2} \alpha / q+b_{11} k_{1} \alpha q\right)\left(R_{1}-R_{1}^{*}\right)\left(R_{2}-R_{2}^{*}\right)$
We want the conditions under which $d V / d t \leq 0$ for all positive R_{1} and R_{2}. Let $x=\left(R_{1}-R_{1}^{*}\right), y=\left(R_{1}-R_{1}^{*}\right)$, and $c=b_{12} k_{2} \alpha / q+b_{11} k_{1} \alpha q$. Then the condition $d V / d t \leq 0$ for all positive R_{1} and R_{2} is the same as determining when the conditions on c are such that there does not exist a real solution to $0=b_{11} k_{1} x^{2}+b_{12} k_{2} y^{2}+c x y$. Via the quadratic formula, this occurs when $c^{2}-4 b_{11} b_{12} k_{1} k_{2}<0$. Substituting for c yields the result.

