
Appendix G Calculation of the basic reproductive ratio R0

We partitioned the projection matrix A, assuming no removals, into a transition matrix, T, and a

disease production matrix, D. To simplify notation, we are dropping the subscript t from A

because we will subsequently linearize it, making it time invariant. The elements of the matrix T

give the probabilities that an animal in state i at time t is alive in state j at time t+ 1 and is

defined by the matrix A without the top row. The fundamental matrix (I−T)−1quantifies the

expected amount of time that an individual spends in each stage. The elements of disease

production matrix D
(
d(i,j)

)
give the number of new, infected individuals in stage i produced by

infectious individuals in stage j during one time step. We excluded males, including juvenile

males, from the elements of D because they can never become infectious. The next generation

matrix of the disease, G, is calculated as G = D(I−T)−1. The elements of G are the expected

lifetime production of new infections (that can become infectious) by an individual in stage j over

the duration of its infectious lifetime. (Allen and van den Driessche, 2008) and Oli et al. (2006)

assert that the dominant eigenvalue of G estimates R0.

This assertion is true for strictly linear models where transmission, and hence T, can be treated

as time-invariant. In this special case, the number of infections created by a single infected

individual is itself a constant and does not depend on the infection status of the population.

However, nonlinear dynamics are the hallmark of models of infectious disease, and we include

these dynamics here (main text equation 4), which means that the probability of transmission

depends on the state of the population, and hence, changes with time. Nonlinearity requires that

we specify conditions for the matrix G consistent with the definition of R0, the number of new

infections created by a single infectious individual amidst a large population of susceptibles.

Expressions for R0 can be obtained symbolically (e.g, Oli et al., 2006) for simple models.

However, to obtain a numerical estimate of R0 for a high dimension matrix like A, we must

assume a population size of susceptible individuals. We choose 3000 because this choice is
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consistent with management targets for abundance of bison in Yellowstone, but it turns out the

results of the estimation of R0 are quite insensitive to this assumption over a broad range of

plausible values1. To estimate the probability that a susceptible animal is exposed (φ∗) when

there is a single infectious individual alive during the infectious period in a population totaling

3000, we used

φ∗ = 1− exp

(
−β

3000ω

)
, (G.1)

where ω is the proportion of the population that was juvenile or female, estimated from the stable

age distribution of a healthy population experiencing exponential growth. The vector ω is needed

because we exclude adult males from the calculation of frequency dependent transmission

(equation 4). The stable age distribution for females was calculated as the normalized, dominant

eigenvector of A assuming recruitment rates for all adult females = fn/2, m = 0, no management

removals and φ(t) = 0. Thus, the quantity φ∗ is the probability that a susceptible animal will

become infected via horizontal transmission when there is a single infectious individual in an

otherwise entirely susceptible population of 3000 bison.

The disease transmission matrix, D, contains all zeros except for six entries

(d(4,6), d(5,6),d(6,6), d(4,7), d(5,7),d(6,7)) specifying the number of new infections of type i created by a

type j individual. To calculate the number of infected individuals created by a single individual

the infected and infectious stage
(
n(6)

)
we first calculated the probability that a susceptible

animal would become infected from contact with a single infectious individual alive during the

infectious period using:

φ∗ = 1− exp

(
−β∑3
i=1 ni

)
(G.2)

The denominator contains only female classes 1-3 because the entire population is susceptible.

The number of new infected juveniles produced by a single n(6) individual via horizontal and

1Changing the assumed population size from 3000 to 5000 or from 3000 to 1000 changed the estimated value of
R0 by <.2%.
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vertical transmission during one year was

d(4,6) = (1−m)(fcv + φfnp(2)n
∗
(3)) (G.3)

We include the term (1−m) because we exclude juvenile males that never become infectious. The

number of new yearling infections produced annually via horizontal transmission from a single

n(6) individual was

d(5,6) = φ∗p(1)n
∗
(1), (G.4)

and the number of new infected and infectious individuals was

d(6,6) = φ∗p(2)

(
n∗(2) + n∗(3)

)
. (G.5)

We multiplied the right hand side of each of equations G.3 - G.5 by ψ and substituted fp for fc in

equation G.3 estimate the contribution of a recrudesced individuals to new infections,

d(4,7), d(5,7), d(6,7).

To estimate R0, we substituted φ∗ for φ(t) in A to obtain the linear projection matrix A∗,

partitioned A∗ into D and T to find G, and numerically estimated the dominant eigenvalue of G.

We estimated the posterior distribution of R0 by randomly sampling the output from the MCMC

procedure (described in the section Parameter estimation), taking a single draw of the parameters

of A∗ at each iteration to calculate a single value of R0. An accumulation of 30,000 of these

values was used to describe the probability distribution of R0.
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