
Appendix E Description of procedures for estimation of annual removals

Equation 3 in the main text is based on the following logic, illustrated with a scalar equation for

simplicity. Let

h(t) = r(t)n(t−1)

where ht is the number of animals removed from the population during t− 1 to t and rt is the

proportion of the population alive at t− 1 that are removed during t− 1 to t. Define the

probability of mortality from natural causes as 1− p so that survival excluding removal mortality

is p. The number of animals that survive from one time step to the next is properly modeled as

n(t) =
(
n(t−1)p

q − h(t)
)
p1−q

where q is the proportion of the time step elapsed before removals occur and h(t) ≤ n(t−1)pq.

Substituting rtnt−1 for ht, it follows that

nt = (nt−1p
q − rtnt−1) p1−q

= nt−1p
qp1−q − rtnt−1p1−q

= nt−1
(
pqp1−q − rtp1−q

)
= nt−1(p− rtp1−q)

Therefore, the probability that an individual survives removals and natural causes of mortality is

p− rtp1−q . This expression allows us to use a time invariant p and a time varying expression rt

informed by data, as described below. This approach was applied to each of the model stages

where pi was an estimated parameter and r(i,t) was estimated from data as follows.

The vector of proportions of animals removed from each age class rt was estimated as the number

of animals removed from each age class divided by the total number of animals in the population.
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We first estimated the number of individuals in each state removed from at time t as

yremovals(t)×rcomp(t)×rsero(t) × rinfect(t), where yremovals(t) is the number of removals at time t

observed without error, rcomp(t) is a stochastic vector of proportions of the removals in each age

class; rsero is a stochastic vector of proportions of age classes that were exposed and susceptible,

and rinfect(t) is a stochastic vector assigning infection status to adult females. The vectors are

stochastic because they are estimated from a sample of the individuals removed.

We estimated the proportion of removals in each age / sex class that occurred during time

t− 1→ t as the four element vector r̃comp[t],

[
r̃comp(t)|yr.age(t)

]
=

Dirichlet
(
yr.age(1,t) + 1, yr.age(2,t) + 1, yr.age(3,t) + 1, yr.age(4,t) + 1

)
(E.1)

The data vector yr.age(t) contains the number of juveniles
(
yr.age(1,t)

)
, yearling females

(
yr.age(2,t)

)
,

adult females
(
yr.age(3,t)

)
and males yearling and older

(
yr.age(4,t)

)
in the annual sample of removals

that occurred during t− 1→ t. Equation E.1 calculates the posterior distribution of the age/sex

composition of removals using a Dirichlet conjugate for the multinomial likelihood of the number

of individuals in each age class and the total number sampled, assuming no prior information. We

used r̃ to compose an eight element vector for assigning age and sex of the total removals as

rcomp(t) =
(
r̃comp(1,t), r̃comp(2,t), r̃comp(3,t), r̃comp(1,t), r̃comp(2,t), r̃comp(3,t), r̃comp(3,t), r̃comp(4,t)

)′

It is important to note that this vector does not sum to one because the product of the vectors

rcomp(t) · rsero(t) · rinfect(t) must sum to one.

The serological composition of removals was estimated from a sample of animals removed that
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were tested for brucellosis. We composed a vector for assigning serological state to removals as

rsero(t) =
(
1− rsero(1,t), 1− rsero(2,t), 1− rsero(3,t), rsero(4,t), rsero(5,t), rsero(6,t), rsero(7,t),1

)′

where rsero(j,t) is the proportion of age class j that were truly exposed, estimated using

[
rsero(j,t), zr.sero(j, t), π, ρ|yr.sero(t)

]
∝

binomial

(
yr.sero(j,1,t)|

πzr.sero(j, t) + ρ
(
yr.sero(j,2,t − zr.sero(j,t)

)
yr.sero(j,2,t)

)
binomial

(
zr.sero(j,t)|rsero(j,t),yr.sero(j,2,t)

)
×

beta
(
rsero(j,t)|1, 1

)
beta (π|476, 42) beta (ρ|403, 15467) (E.2)

where zr.sero(j,t) is the true number of exposed animals of age class j removed at time t; yr.sero(j,1,t)

is the observed number of seropositive animals of age class j and yr.sero(j,2,t) is the number of

animals in age class j that were tested. The parameter π specifies the probability of a positive

test result for an animal that has been exposed and ρ gives the probability of a positive test result

for an animal that has not been exposed. By including the probability of a true positive and the

probability of a false positive in equation E.2 we account for uncertainty in the serological test as

well as uncertainty created by sampling. Methods for developing informative prior distributions

on π and ρ are given in the section Parameter models.

The proportion of seropositives that were infectious or recovered was not observed in the serology

data. The proportion of adult seropositive females that were infectious was unknown. To include

this latent quantity in the calculation of annual removals, we defined a vector,

rinfect(t) =

(
1, 1, 1, 1, 1,

n(6,t−1)

n(6,t−1) + n(7,t−1)
,

n(7,t−1)

n(6,t−1) + n(7,t−1)
, 1

)′
.

This represents the assumption that the proportion of infectious animals removed was the same as
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their proportion in the population. We calculated the proportion of state i removed during t− 1 as

r(i,t) =
yremovals(t) · rcomp(i,t) · rsero(i,t) · rinfect(i,t)

n(i,t−1)
.
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