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B Theorems and Definitions

Theorems and definitions presented here are used to support the arguments in
the manuscript. They were extracted almost literally from the original sources:
Braun (1993); Holmes and Shea-Brown (2006); Sontag (2008); d’Andréa Novel
and De Lara (2013).

B.1 Definitions

We mainly consider autonomous ordinary differential equations (ODEs), written
in vector notation as:

d

dt
x=ẋ = f(x); x ∈ Rn, (B.1)

where

f(x) =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 , x =

x1...
xn

 . (B.2)

We denote a solution to (B.1) by x(t), with initial conditions x(0). Equi-
libria xe (sometimes called “equilibrium points” or “fixed points”), are special
constant solutions: x(t) ≡ xe where ẋe = f(xe) = 0, which is equivalent to
requiring fj(x

e
1, . . . , x

e
n) = 0 for all 1 ≤ j ≤ n.

Definition: 1. Lyapunov stability xe is a ‘stable’ equilibrium if for every
neighborhood U of xe there is a neighborhood V ⊆ U of xe such that every
solution x(t) starting in V (x(0) ∈ V ) remains in U for all t ≥ 0. Notice that
x(t) need not approach xe. If xe is not stable, it is ‘unstable’.

Definition: 2. Asymptotic stability An equilibrium xe is ‘asymptotically
stable’ if it is Lyapunov stable and additionally V can be chosen so that |x(t)−
xe| → 0 as t→∞ for all x(0) ∈ V .
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Definition: 3. BIBS and BIBO stability The linear dynamical system

dC(t)

dt
= I(t) + T(C, t) ·N(C, t) ·C(t)

r(t) = R(t) ·N(C, t) ·C(t)

is said to be BIBS-stable if, for all initial conditions C0 and for all bounded
inputs (I(t), t ≥ 0), the state (C(t), t ≥ 0) remains bounded:

sup
t≥0
‖I(t)‖ < +∞⇒ sup

t≥0
‖C(t)‖ < +∞. (B.3)

Similarly, the system is said to be BIBO-stable if, for all initial conditions and
for all bounded input (I(t), t ≥ 0), the output (r(t), t ≥ 0) remains bounded:

sup
t≥0
‖I(t)‖ < +∞⇒ sup

t≥0
‖r(t)‖ < +∞. (B.4)

Definition: 4. ISS Consider the system:

Ẋ = g(X,u) (B.5)

Then (B.5) is said to be locally input-to-state-stable (ISS) if there exist a KL
function β, a class K∞ function γ and constants k1, k2 ∈ R+ such that

‖X(t)‖ ≤ β(‖X0‖, t) + γ(‖u‖∞), ∀t ≥ 0 (B.6)

for all X0 ∈ D and u ∈ Du satisfying: ‖X0‖ < k1 and ‖u‖∞ = sups>0 ‖u(s)‖ <
k2. It is said to be input-to-state-stable, or globally ISS if D = Rn, Du = Rm

and (B.6) is satisfied for any initial state and any bounded input u.

Definition: 5. Class K∞ function A class K∞ function is a function α :
R+ → R+ which is continuous, strictly increasing, unbounded, and satisfies
α(0) = 0.

Definition: 6. Class KL function A class KL function is a function β :
R+ × R+ → R+ such that β(·, t) ∈ K∞ for each t and β(r, t)↘ 0 as t→∞.

Definition: 7. Rn+ ,Rn−

We call the positive part of the phase space Rn+:

Rn+ = {v : vi ≥ 0 ∀i ∈ {1, . . . n}}

and accordingly
Rn− = {v : vi ≤ 0 ∀i ∈ {1, . . . n}}

Remark:
Neither Rn+ nor Rn+ nor Rn+ ∪ Rn− are vector spaces. They are just subsets
of Rn not sub spaces and the smallest subspace of Rn that contains them is Rn

itself.
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B.2 Stability of linear systems

Consider the linear system
ẋ = A · x (B.7)

Theorem 1. (a) Every solution x = φ(t) of (B.7) is stable if all eigenvalues
of A have negative real part.
(b) Every solution x = φ(t) of (B.7) is unstable if at least one eigenvalue of A
has positive real part.
(c) Suppose that all eigenvalues of A have real part ≤ 0 and λ1 = iσ1. . . . , λl =
iσl have zero real part. Let λj = iσj have multiplicity kj. This means that the
characteristic polynomial of A can be factored into the form

p(λ) = (λ− iσ1)k1 . . . (λ− iσl)kl q(λ)

where all the roots of q(λ) have negative real part. Then, every solution x =
φ(t) of (B.7) is stable if A has kj linearly independent eigenvectors for each
eigenvalue λj = iσj. Otherwise, every solution of φ(t) is unstable.

A proof of this theorem is provided in Braun (1993).

B.3 Hartman-Grobman theorem

The Hartman-Grobman theorem shows that near a hyperbolic equilibrium point
x0, i.e. Re(λi) 6= 0 for i = 1, . . . , n, the nonlinear system of equation (B.1)
has the same qualitative structure as the linear system of equation (B.7) with
A = Df(x0), where Df = [∂fi/∂xj ] is the Jacobian matrix of first partial
derivatives of f (Guckenheimer and Holmes, 1983).

Theorem 2. If Df(x0) has no zero or purely imaginary eigenvalues then there
is a homeomorphism h defined on some neighborhood U of x0 in Rn locally
taking orbits of the nonlinear flow φ(t) of (B.1), to those of the linear flow
etDf(x0) of (B.7). The homeomorphism preserves the sense of orbits and can
also be chosen to preserve parameterization by time.
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