Appendix for A general mathematical framework for representing soil organic matter dynamics

Carlos A. Sierra^{*} Markus Müller

B Theorems and Definitions

Theorems and definitions presented here are used to support the arguments in the manuscript. They were extracted almost literally from the original sources: Braun (1993); Holmes and Shea-Brown (2006); Sontag (2008); d'Andréa Novel and De Lara (2013).

B.1 Definitions

We mainly consider autonomous ordinary differential equations (ODEs), written in vector notation as:

$$\frac{d}{dt}\mathbf{x} = \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}); \ \mathbf{x} \in \mathbb{R}^n,$$
(B.1)

where

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$
 (B.2)

We denote a solution to (B.1) by $\mathbf{x}(t)$, with initial conditions $\mathbf{x}(0)$. Equilibria \mathbf{x}^e (sometimes called "equilibrium points" or "fixed points"), are special constant solutions: $\mathbf{x}(t) \equiv \mathbf{x}^e$ where $\dot{\mathbf{x}^e} = \mathbf{f}(\mathbf{x}^e) = \mathbf{0}$, which is equivalent to requiring $f_j(x_1^e, \ldots, x_n^e) = 0$ for all $1 \le j \le n$.

Definition: 1. Lyapunov stability \mathbf{x}^e is a 'stable' equilibrium if for every neighborhood U of \mathbf{x}^e there is a neighborhood $V \subseteq U$ of \mathbf{x}^e such that every solution $\mathbf{x}(t)$ starting in V ($\mathbf{x}(0) \in V$) remains in U for all $t \ge 0$. Notice that $\mathbf{x}(t)$ need not approach \mathbf{x}^e . If \mathbf{x}^e is not stable, it is 'unstable'.

Definition: 2. Asymptotic stability An equilibrium \mathbf{x}^e is 'asymptotically stable' if it is Lyapunov stable and additionally V can be chosen so that $|\mathbf{x}(t) - \mathbf{x}^e| \to 0$ as $t \to \infty$ for all $\mathbf{x}(0) \in V$.

^{*}Max Planck Institute for Biogeochemistry, Jena, Germany. Email: csierra@bgc-jena.mpg.de

Definition: 3. BIBS and BIBO stability The linear dynamical system

$$\frac{d\boldsymbol{C}(t)}{dt} = \boldsymbol{I}(t) + \boldsymbol{T}(\boldsymbol{C}, t) \cdot \boldsymbol{N}(\boldsymbol{C}, t) \cdot \boldsymbol{C}(t)$$
$$\boldsymbol{r}(t) = \boldsymbol{R}(t) \cdot \boldsymbol{N}(\boldsymbol{C}, t) \cdot \boldsymbol{C}(t)$$

is said to be BIBS-stable if, for all initial conditions C_0 and for all bounded inputs $(I(t), t \ge 0)$, the state $(C(t), t \ge 0)$ remains bounded:

$$\sup_{t \ge 0} \|\boldsymbol{I}(t)\| < +\infty \Rightarrow \sup_{t \ge 0} \|\boldsymbol{C}(t)\| < +\infty.$$
(B.3)

Similarly, the system is said to be BIBO-stable if, for all initial conditions and for all bounded input $(\mathbf{I}(t), t \ge 0)$, the output $(\mathbf{r}(t), t \ge 0)$ remains bounded:

$$\sup_{t \ge 0} \|\boldsymbol{I}(t)\| < +\infty \Rightarrow \sup_{t \ge 0} \|\boldsymbol{r}(t)\| < +\infty.$$
(B.4)

Definition: 4. ISS Consider the system:

$$\dot{\mathbf{X}} = \mathbf{g}(\mathbf{X}, \mathbf{u}) \tag{B.5}$$

Then (B.5) is said to be locally input-to-state-stable (ISS) if there exist a \mathcal{KL} function β , a class \mathcal{K}_{∞} function γ and constants $k_1, k_2 \in \mathbb{R}^+$ such that

$$\|\mathbf{X}(t)\| \le \beta(\|\mathbf{X}_0\|, t) + \gamma(\|\mathbf{u}\|_{\infty}), \quad \forall t \ge 0$$
(B.6)

for all $\mathbf{X}_0 \in D$ and $\mathbf{u} \in D_u$ satisfying: $\|\mathbf{X}_0\| < k_1$ and $\|\mathbf{u}\|_{\infty} = \sup_{s>0} \|\mathbf{u}(s)\| < k_2$. It is said to be input-to-state-stable, or globally ISS if $D = \mathbb{R}^n, D_u = \mathbb{R}^m$ and (B.6) is satisfied for any initial state and any bounded input u.

Definition: 5. Class \mathcal{K}_{∞} function A class \mathcal{K}_{∞} function is a function α : $\mathbb{R}^+ \to \mathbb{R}^+$ which is continuous, strictly increasing, unbounded, and satisfies $\alpha(0) = 0$.

Definition: 6. Class \mathcal{KL} function A class \mathcal{KL} function is a function β : $\mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ such that $\beta(\cdot, t) \in \mathcal{K}_{\infty}$ for each t and $\beta(r, t) \searrow 0$ as $t \to \infty$.

Definition: 7. \mathbb{R}^{n+} , \mathbb{R}^{n-} We call the positive part of the phase space \mathbb{R}^{n+} :

$$\mathbb{R}^{n+} = \{ \mathbf{v} : v_i \ge 0 \quad \forall i \in \{1, \dots n\} \}$$

and accordingly

$$\mathbb{R}^{n-} = \{ \mathbf{v} : v_i \le 0 \quad \forall i \in \{1, \dots n\} \}$$

Remark:

Neither \mathbb{R}^{n+} nor \mathbb{R}^{n+} nor $\mathbb{R}^{n+} \cup \mathbb{R}^{n-}$ are vector spaces. They are just subsets of \mathbb{R}^n not sub spaces and the smallest subspace of \mathbb{R}^n that contains them is \mathbb{R}^n itself.

B.2 Stability of linear systems

Consider the linear system

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} \tag{B.7}$$

Theorem 1. (a) Every solution $\mathbf{x} = \phi(t)$ of (B.7) is stable if all eigenvalues of **A** have negative real part.

(b) Every solution $\mathbf{x} = \phi(t)$ of (B.7) is unstable if at least one eigenvalue of \mathbf{A} has positive real part.

(c) Suppose that all eigenvalues of **A** have real part ≤ 0 and $\lambda_1 = i\sigma_1, \ldots, \lambda_l = i\sigma_l$ have zero real part. Let $\lambda_j = i\sigma_j$ have multiplicity k_j . This means that the characteristic polynomial of **A** can be factored into the form

$$p(\lambda) = (\lambda - i\sigma_1)_1^k \dots (\lambda - i\sigma_l)_l^k q(\lambda)$$

where all the roots of $q(\lambda)$ have negative real part. Then, every solution $\mathbf{x} = \phi(t)$ of (B.7) is stable if \mathbf{A} has k_j linearly independent eigenvectors for each eigenvalue $\lambda_j = i\sigma_j$. Otherwise, every solution of $\phi(t)$ is unstable.

A proof of this theorem is provided in Braun (1993).

B.3 Hartman-Grobman theorem

The Hartman-Grobman theorem shows that near a hyperbolic equilibrium point $\mathbf{x_0}$, i.e. $Re(\lambda_i) \neq 0$ for i = 1, ..., n, the nonlinear system of equation (B.1) has the same qualitative structure as the linear system of equation (B.7) with $\mathbf{A} = D\mathbf{f}(\mathbf{x_0})$, where $D\mathbf{f} = [\partial f_i/\partial x_j]$ is the Jacobian matrix of first partial derivatives of \mathbf{f} (Guckenheimer and Holmes, 1983).

Theorem 2. If $D\mathbf{f}(\mathbf{x}_0)$ has no zero or purely imaginary eigenvalues then there is a homeomorphism h defined on some neighborhood U of \mathbf{x}_0 in \mathbb{R}^n locally taking orbits of the nonlinear flow $\phi(t)$ of (B.1), to those of the linear flow $e^{tD\mathbf{f}(\mathbf{x}_0)}$ of (B.7). The homeomorphism preserves the sense of orbits and can also be chosen to preserve parameterization by time.

Literature cited

- Braun, M. (1993). Differential Equations and Their Applications, volume 11 of Texts in Applied Mathematics. Springer New York.
- d'Andréa Novel, B. and De Lara, M. (2013). *Control Theory for Engineers*. Springer Berlin Heidelberg.
- Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer New York.
- Holmes, P. and Shea-Brown, E. T. (2006). Stability. Scholarpedia, 1(10):1838.
- Sontag, E. (2008). Input to state stability: Basic concepts and results. In Nistri, P. and Stefani, G., editors, Nonlinear and Optimal Control Theory, volume 1932 of Lecture Notes in Mathematics, pages 163–220. Springer Berlin Heidelberg.