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A Representation of illustrative models within
the proposed framework

A.1 Henin’s model

The first published model of SOM decomposition based on differential equa-
tions was proposed by S. Henin and colleagues (Henin and Dupuis, 1945; Henin
et al., 1959). The model contains a labile pool A and a stable pool B, which
decomposed at annual rates α and β, respectively. The system of equations was
originally expressed as

dA

dt
= m− αA

dB

dt
= kαA− βB, (A.1)

with annual organic matter inputs represented as m; and k the ‘isohumic coef-
ficient’, a transfer constant from the labile to the stable pool.

This linear system can be expressed as

dC

dt
= I + A ·C =

(
m
0

)
+

(
−α 0
kα −β

)
·
(
A
B

)
(A.2)

Notice that this model corresponds to the LTI model structure. It is based
on the principles of mass balance, substrate dependence, heterogeneity of de-
composition rates, and organic matter transformations, but does not consider
the effects of the environment on decomposition rates, and interactions among
different types of organic matter.
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A.2 The ICBM model

The ICBM model, proposed by Andren and Katterer (1997), is similar to the
model proposed by Henin, but includes the principle of environmental effects
on decomposition. The two pools are called here young Y and old O, with
decomposition rates k1 and k2, respectively. The transfer coefficient from the
young to the old pool is denoted here as ‘humification’ rate. The system of
equations is expressed as

dY

dt
= i− rk1Y

dO

dt
= hrk1Y − rk2O, (A.3)

which can be expressed within our framework as

dC

dt
= I + ξ ·A ·C =

(
i
0

)
+ r

(
−k1 0
hk1 −k2

)
·
(
Y
O

)
. (A.4)

In this case the environmental effects term r is a constant.
Using the parameterization presented in Andren and Katterer (1997), where

k1 = 0.8 and k2 = 0.00605 yr−1, the eigenvalues for different treatments were
calculated as

Treatment i h r λ1 λ2

Bare fallow 0 0.130 1.32 -1.056 -0.00798
+N, + straw 0.285 0.125 1.00 -0.800 -0.00605
-N, + straw 0.248 0.125 1.22 -0.976 -0.00738
-N, - straw 0.057 0.125 1.17 -0.936 -0.00708
+N, - straw 0.091 0.250 1.10 -0.856 -0.00647
Farmyard manure 0.272 0.125 1.00 -0.880 -0.00665
Sewage sludge 0.296 0.34 0.97 -0.776 -0.00587

Notice that all eigenvalues in this model are negative, therefore the model is
asymptotically stable.

A.3 The RothC model

The RothC model (Jenkinson and Rayner, 1977; Coleman and Jenkinson, 1999)
can be described by the following set of differential equations
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dC1

dt
= γI − ξ(t)k1C1

dC2

dt
= (1− γ)I − ξ(t)k2C2

dC3

dt
= α1,3ξ(t)k1C1 + α2,3ξ(t)k2C2 − ξ(t)k3C3 + α3,3ξ(t)k3C3 + α4,3ξ(t)k4C4

dC4

dt
= α1,4ξ(t)k1C1 + α2,4ξ(t)k2C2 + α3,4ξ(t)k3C3 − ξ(t)k4C4 + α4,4ξ(t)k4C4

dC5

dt
= 0 (A.5)

where C1 represents the decomposable plant material (DPM) pool, C2 the re-
sistant plant material (RPM) pool, C3 the microbial biomass (BIO) pool, C4

the humified organic matter (HUM) pool, and C5 the inert organic matter pool
(IOM). This set of equations can be rewritten in the form

dC

dt
= I + ξ(t) ·A ·C

dC

dt
= I


γ

1− γ
0
0
0

+ ξ(t)


−k1 0 0 0 0

0 −k2 0 0 0
α1,3k1 α2,3k2 −k3(1− α3,3) α4,3k4 0
α1,4k1 α2,4k2 α3,4k3 −k4(1− α4,4) 0

0 0 0 0 0




C1

C2

C3

C4

C5



dC

dt
= I


γ

1− γ
0
0
0

+ ξ(t)


−k1 0 0 0 0

0 −k2 0 0 0
a1,3 a2,3 −k3 + a3,3 a4,3 0
a1,4 a2,4 a3,4 −k4 + a4,4 0

0 0 0 0 0




C1

C2

C3

C4

C5

 ,

(A.6)

where ξ(t) = f(T ) · f(W ); i.e. a time-dependent rate modifying scalar that
is the product of a function that depends on temperature and a function that
depends on soil moisture.

The value of the transfer coefficients is determined by a function of soil
texture. For the microbial biomass pool, transfer coefficients are calculated as

a3,j = k3,j
0.46

x+ 1
(A.7)

where x is a value that determines the proportion of decomposed material that
is respired as CO2 and is given by

x = 1.67(1.85 + 1.60 exp(−0.0786 pClay)) (A.8)

where pClay is percent clay in mineral soil (Jenkinson and Rayner, 1977). Sim-
ilarly, the transfer coefficients for the humified pool are given by

a4,j = k4,j
0.54

x+ 1
. (A.9)
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The partitioning coefficient for the litter inputs is calculated from the ratio
of decomposable plant material to resistant plant material DR as

γ =
DR

DR+ 1
. (A.10)

With parameters substituted as follows (Jenkinson and Rayner, 1977; Cole-
man and Jenkinson, 1999): k1 = 10, k2 = 0.3, k3 = 0.66, k4 = 0.02, k5 = 0,
pClay = 23.4, DR = 1.44, I = 1.7, ξ(t) = 1; the eigenvalues are: λ :
{0,−0.0174,−0.3,−0.593,−10.0}. Notice that the inert pool has k5 = 0 and
therefore one of the eigenvalues is equal to zero.

A.4 The Century model

The Century model (Parton et al., 1987) can be described by the following set
of differential equations

dC1

dt
= I · Fm − ξ(t)C1k1e

−3.0Ls

dC2

dt
= I · Fs − ξ(t)C2k2

dC3

dt
= C1α31ξ(t)k1e

−3.0Ls + C2α32ξ(t)k2 + C4α34ξ(t)k4 + C5α35ξ(t)k5 − C3ξ(t)k3f(Tx)

dC4

dt
= C1α41ξ(t)k1e

−3.0Ls + C3α43ξ(t)k3f(Tx)− C4ξ(t)k4 (A.11)

dC5

dt
= C3α53ξ(t)k3f(Tx) + C4α54ξ(t)k4 − C5ξ(t)k5

where C1 . . . C5 represent the pools: structural litter, metabolic litter, active
SOM, slow SOM, and passive SOM, respectively. Fm and Fs are fractions in
which incoming litter is partitioned between structural and metabolic litter, Ls
the fraction of structural material that is lignin, and f(Tx) is a function of soil
texture that modifies decomposition rates of the active SOM pool.

This system of equations can also be expressed as

dC

dt
= I + ξ(t) ·A ·C

= I


Fm
Fs
0
0
0

+ ξ(t)


−k1e−3Ls 0 0 0 0

0 −k2 0 0 0
α31k1e

−3Ls α32k2 −k3f(Tx) α34k4 α35k5
α41k1e

−3Ls 0 α43k3f(Tx) −k4 0
0 0 α53k3f(Tx) α54k4 −k5




C1

C2

C3

C4

C5

 .

(A.12)

In Century, the environmental rate modifier is also a function of temperature
and moisture of the form ξ(t) = f(T ) · f(W ). This modifier is commonly called
DEFAC.
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A.5 The exoenzyme model of Schimel and Weintraub

A model that explicitly represents microbial exoenzyme production and its con-
trol on soil organic carbon decomposition was proposed by Schimel and Wein-
traub (2003). The model contains four state variables: Soil organic carbon S,
dissolved organic carbon D, microbial biomass M , and exoenzymes E. Three
versions of the model were proposed in the original paper, which we describe
below.

A.5.1 Decomposition as first order on enzyme concentrations

The model can be represented as a system of differential equations as

dS

dt
= −KdE

dD

dt
= KdE +KtKrM −D

dM

dt
= D −KeD −KmM

dE

dt
= KeD −KlE (A.13)

where Ke, Kd, Kt, Kr, Km, and Kl are first rate constants. The version of the
model we present here contains some mathematical simplification by aggregating
constants into a single one, but in essence it is the same model.

Notice that this model (A.13) only incorporates the output component of
the soil carbon balance so external inputs of organic matter are ignored. Within
our general framework, the exoenzyme model can be described as

dC

dt
= T ·O =


−1 0 0 0
1 −1 KtKr

Km
0

0 1−Ke −1 0
0 Ke 0 −1



KdE
D

KmM
KlE

 (A.14)

or

dC

dt
= T ·N(C)·C =


−1 0 0 0
1 −1 KtKr

Km
0

0 1−Ke −1 0
0 Ke 0 −1



KdE 0 0 0

0 1 0 0
0 0 Km 0
0 0 0 Kl




1
D
M
E

 .

(A.15)
This matrix representation of the exoenzyme model allow us to see important

properties of the model not necessarily obvious in the original representation
(Schimel and Weintraub, 2003). First, the model assumes no dependence on
substrate concentrations for decomposition as shown by the value of 1 in the
first element of the vector of states of equation (A.15). Second, the 1 elements
of the matrix of equation (A.14) represent the assumption of this model that
the entire amount of C from the decomposed substrate is transferred to the
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DOC pool and subsequently is taken up by the microbes. Third, proportion of
this DOC taken up by the microbes is immediately used to produce exoenzymes
according to the parameter Ke. Fourth, a proportion of the total losses from the
microbial biomass pool is transferred to the exoenzyme pool; this proportion is
given by the term (KrKtM)/(KeD +R+KtM).

The Jacobian matrix for this model is given by

∂

∂C
(T ·O) =


0 0 0 −Kd

0 −1 KrKt Kd

0 1−Ke −Km 0
0 Ke 0 −Kl

 . (A.16)

Notice the zero in the first entry, which is the result of the lack of substrate
dependence of the S pool for decomposition. This is problematic because it
implies that even if the S pool is depleted, decomposition will still occur as long
as there is enzyme, leading to unrealistic negative values of the S pool. Further,
if the system is driven by inputs to the S pool, C may accumulate indefinitely
in the system.

Using the set of parameters provided in Schimel and Weintraub (2003), we
found the following set of eigenvalues of the matrix of equation (A.16)

λ1 = 0

λ2 = −1.0177− 7.0× 10−24i

λ3 = 0.0002 + 8.0× 10−25i

λ4 = −0.2076 + 1.0× 10−23i

Notice that λ3 > 0, therefore this system is unstable and violates the principle
of mass balance.

A.5.2 Decomposition as a Reverse Michaelis-Menten process

The most commonly used version of this model includes a ‘Reverse Michaelis-
Menten’ (RMM) form for the decomposition term that accounts for the enzyme
limitation of decomposition. The model can be expressed in matrix form as

dC

dt
= T ·N(C)·C =


−1 0 0 0
1 −1 KtKr

Km
0

0 1−Ke −1 0
0 Ke 0 −1




KdE
Kes+E

0 0 0

0 1 0 0
0 0 Km 0
0 0 0 Kl




1
D
M
E

 .

(A.17)
This version of the model also ignores the principle of substrate dependence

of decomposition and therefore produces eigenvalues of the Jacobian with posi-
tive real part.
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A.5.3 Decomposition as RMM with substrate dependence

An improved version of the model does include substrate dependence of decom-
position and therefore values of the eigenvalues of the Jacobian with negative
real parts.

dC

dt
= T ·N(C)·C =


−1 0 0 0
1 −1 KtKr

Km
0

0 1−Ke −1 0
0 Ke 0 −1




KdE
Kes+E

0 0 0

0 1 0 0
0 0 Km 0
0 0 0 Kl



S
D
M
E

 .

(A.18)

A.6 The BACWAVE model

One of the earliest models of soil organic matter decomposition presenting os-
cillatory behavior was proposed by Zelenev et al. (2000). The model consist of
a microbial biomass X and a substrate pool S, and the system of equations is
given by

dX

dt
= µmaxX

S

KS · θ + S
−DmaxX

Kd

Kd + S/θ

dS

dt
=
−X
Y

µmaxS

KS · θ + S
+KrXDmax

Kd

Kd + S/θ
+BFG+ Exu(t), (A.19)

where all other terms represent constants, except Exu(t), which is a time-
dependent exudation rate. For details about the ecological meaning of all terms
see Zelenev et al. (2000).

This model can be represented within our theoretical framework as

dC

dt
= I(t) + T ·O =

(
0

BFG+ Exu(t)

)
+

(
−1 Y
Kr −1

)(
DmaxX

Kd

Kd+S/θ
X
Y
µmax·S
KS ·θ+S

)
(A.20)

or as

dC

dt
= I(t) + T ·N(C) ·C

=

(
0

BFG+ Exu(t)

)
+

(
−1 Y
Kr −1

)(
Dmax

Kd

Kd+S/θ
0

0 X
Y

µmax

KS ·θ+S

)(
X
S

)
.

(A.21)

With parameter values as reported in Zelenev et al. (2000): Dmax = 0.26,
Y = 0.44, ks = 3.0, θ = 0.23, ExuT = 0.8, BGF = 0.15, kd = 14.5, kr = 0.4,
Exumax = 8, umax = 0.063; the eigenvalues of the model are given by
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λ1 = −0.495− 0.237i,

λ2 = −0.495 + 0.237i.

These eigenvalues lead to oscillatory behavior in the model, which is char-
acterized by a damping ratio ζ = 0.91.

A.7 The microbial model of Allison, Wallenstein, and Brad-
ford (AWB)

A microbial explicit model that includes a DOC pool was proposed by Allison
et al. (2010). This model represent the dynamics of a microbial biomass B,
enzyme E, soil organic carbon S, and dissolved organic carbon D pools. Using
the notation in Li et al. (2014), the model is described by the system

dB

dt
= VM exp

(
−Ea

< · (T + 273)

)
B ·D

(KmusT +Kmu0) +D
(ε0 + εsT )− rBB − rEB

dE

dt
= rE ·B − rL · E

dS

dt
= IS + aBS · rB ·B − Vm exp

(
−Ea

<(T + 273)

)
E · S

(KmsT +Km0) + S
(A.22)

dD

dt
= ID + rB(1− aBS)B + Vm exp

(
−Ea

<(T + 273)

)
E · S

(KmsT +Km0) + S

+ rLE − VM exp

(
−Ea

< · (T + 273)

)
B ·D

(KmusT +Ku0) +D
.

In matrix form

dC

dt
= I + T ·O

=


0
0
IS
ID

+


−1 0 0 (ε0 + εsT )

rE/(rB + rE) −1 0 0
aBS · rB/(rB + rE) 0 −1 0

rB(1− aBS)/(rB + rE) 1 1 −1



·


(rB + rE)B

rLE

Vm exp
(

−Ea

<(T+273)

)
E·S

(KmsT+Km0)+S

VM exp
(

−Ea

<·(T+273)

)
B·D

(KmusT+Kmu0)+D

 , (A.23)

or as
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dC

dt
= I + T ·N(C) ·C

=


0
0
IS
ID

+


−1 0 0 (ε0 + εsT )

rE/(rB + rE) −1 0 0
aBS · rB/(rB + rE) 0 −1 0

rB(1− aBS)/(rB + rE) 1 1 −1



·


(rB + rE) 0 0 0

0 rL 0 0

0 0 Vm exp
(

−Ea

<(T+273)

)
E

(KmsT+Km0)+S
0

0 0 0 VM exp
(

−Ea

<·(T+273)

)
B

(KUsT+KU0)+D

 ·

B
E
S
D

 .

(A.24)

A.8 The Microbial-Enzyme-Mediated Decomposition model
MEND

Wang et al. (2013) proposed a microbial explicit model that consists of seven
pools, P : particulate organic carbon, M : mineral associated carbon, Q: ad-
sorbed phase of DOC, B: microbial biomass, D: dissolved organic carbon, EP :
enzymes for the decomposition of P , and EM : enzymes for the decomposition
of M . The model can be expressed as the following system of equations. Details
about the parameters can be found in Wang et al. (2013).

dP

dt
= IP + (1− gD)(1− PEP − PEM )mR ·B −

VP · EP · P
KP + P

dM

dt
= (1− fD)

VP · EP · P
KP + P

− VM · EM ·M
KM +M

dQ

dt
= Kads

(
1− Q

Qmax

)
D −Kdes

Q

Qmax

dB

dt
=
VD +mR

EC

D ·B
KD +D

−
(

1

EC
− 1

)
B ·D(VD +mR)

KD +D
−B ·mR (A.25)

dD

dt
= ID + fD

VP · EP · P
KP + P

+ gD(1− PEP − PEM )mR ·B +
VM · EM ·M
KM +M

+ rEP · EP + rEM · EM −D
(
VD +mR

EC

B

KD +D
+
Kads(Qmax −Q)

Qmax

)
+Kdes

Q

Qmax

dEP

dt
= PEP ·mR ·B − rEP · EP

dEM

dt
= PEM ·mR ·B − rEM · EM

To simplify the matrix representation, we introduce the following variables:
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PE = PEP + PEM

FR = B ·
(

1

EC
− 1

)
D(VD +mR)

KD +D

FE = B ·mR

OB = FR + FE

FU = D · VD +mR

EC

B

KD +D

FA = D · Kads(Qmax −Q)

Qmax

OD = FU + FA,

so we can define the fractions of the decomposed microbial biomass that is allo-
cated to enzyme production fE , the fraction of the total DOC that is allocated
to microbial uptake fU , and the fraction of total DOC that is adsorbed fA as

fE =
FE
OB

,

fU =
FU
OD

,

fA =
FA
OD

.

The system of equations can then be represented as

dC

dt
= I + T ·O

=



IP
0
0
0
ID
0
0


+



−1 0 0 (1− gD)(1− PE)fE 0 0 0
1− fD −1 0 0 0 0 0

0 0 −1 0 fA 0 0
0 0 0 −1 fU 0 0
fD 1 1 gD(1− PE)fE −1 1 1
0 0 0 PEP fE 0 −1 0
0 0 0 PEMfE 0 0 −1



·



VP ·EP ·P
KP+P

VM ·EM ·M
KM+M
KdesQ
Qmax

OB
OD

rEP · EP
rEM · EM


, (A.26)
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or alternatively as

dC

dt
= I + T(C) ·N(C) ·C

=



IP
0
0
0
ID
0
0


+



−1 0 0 (1− gD)(1− PE)fE 0 0 0
1− fD −1 0 0 0 0 0

0 0 −1 0 fA 0 0
0 0 0 −1 fU 0 0
fD 1 1 gD(1− PE)fE −1 1 1
0 0 0 PEP fE 0 −1 0
0 0 0 PEMfE 0 0 −1



·



VP ·EP
KP+P 0 0 0 0 0 0

0 VM ·EM
KM+M 0 0 0 0 0

0 0 Kdes

Qmax
0 0 0 0

0 0 0 OB

B 0 0 0
0 0 0 0 OD

D 0 0
0 0 0 0 0 rEP 0
0 0 0 0 0 0 rEM


·



P
M
Q
B
D
EP
EM


. (A.27)

A.9 Microbial models of Fontaine and Barot

Fontaine and Barot (2005) proposed a family of models representing aggregated
microbial populations and their effects on carbon and nitrogen cycling.

A.9.1 Model 1

This model can be expressed as a system of equations of the form

dCs
dt

= −ACds
dCds
dt

= (A− r)Cds + φl (A.28)

This model is linear therefore can be represented in the form I + AC as

dC

dt
=

(
0
φl

)
+

(
0 −A
0 A− r

)(
Cs
Cds

)
. (A.29)

Outputs from the Cs pool are not proportional to the size of this pool,
instead they are proportional to the size of Cds. Notice that this model leads
to one eigenvalue with value zero.

A.9.2 Model 2

The system of equation is given by
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dCs
dt

= (s−A)Cds

dCds
dt

= (A− r − s)Cds + φl, (A.30)

and the linear matrix form is given by

dC

dt
=

(
0
φl

)
+

(
0 s−A
0 A− r − s

)(
Cs
Cds

)
. (A.31)

This model also presents one eigenvalue equal to zero.
Both model 1 and 2 seem quite unrealistic because they accumulate carbon

in the decomposer biomass Cds exponentially independent of the amount of
substrate. Even worse, if the substrate is completely depleted the decomposers
can continue growing. These models do not comply with the principle of mass
balance.

A.9.3 Model 3

This model includes a nitrogen pool. The system of equations is given by

dCs
dt

= (s−A)Cds

dCf
dt

= φl − φd
dCds
dt

= (A− s− r)Cds + φd

dN

dt
= φi − φo − φup + φIMs (A.32)

The inputs φi and outputs φo of mineral nitrogen as well as plant uptake
φup are considered constant, therefore we define φ = φi − φo − φup. The
immobilization-mineralization flux is given by φIMs = αrCds+(β−α)φd. Under
C limitation conditions the decomposition flux is given by φd = kCf . Again,
this is a linear model that can be expressed as

d(C,N)

dt
=


0
φl
0
φ

+


s−A 0 0 0

0 −k 0 0
0 k A− s− r 0
0 k(β − α) αr 0



Cs
Cf
Cds
N

 . (A.33)

If the system is N-limited, then φd = (iN +αrCds)/(α− β), and the system
of equations is defined as
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dCs
dt

= (s−A)Cds

dCf
dt

= φl −
iN

α− β
− αrCds
α− β

dCds
dt

= Cds

(
(A− s− r) +

αr

α− β

)
+

iN

α− β
dN

dt
= φ− iN (A.34)

which in matrix form can be expressed as

d(C,N)

dt
=


0
φl
0
φ

+


s−A 0 0 0

0 0 −αr
α−β

−i
α−β

0 0 (A− s− r) + αr
α−β

i
α−β

0 0 0 −i



Cs
Cf
Cds
N

 . (A.35)

This model also presents one eigenvalue equal to zero, and if A < s the
system is unstable and violates the principle of mass balance.

A.9.4 Model 4

Again, there are two versions of the model, one under carbon limitation and
another under nitrogen limitation. The system of equations for the version of
C-limitation is given by

dCs
dt

= (s−A)Cds + sCdf

dCf
dt

= φl − Cf (y + u)

dCds
dt

= Cds(A− s− r) + yCf

dCdf
dt

= uCf − (s+ r)Cdf

dN

dt
= φ+ αrCds + Cf (β − α)(y + u) + αrCdf (A.36)

which in matrix form looks like

d(C,N)

dt
=


0
φl
0
0
φ

+


s−A 0 0 s 0

0 y + u 0 0 0
0 y (A− s− r) 0 0
0 u 0 −(s+ r) 0
0 (β − α)(y + u) αr αr 0



Cs
Cf
Cds
Cdf
N

 .

(A.37)
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Now, under N-limitation the system of equations is given by

dCs
dt

= (s−A)Cds + sCdf

dCf
dt

= φl −
2iN

α− β
− αrCds
α− β

− αrCdf
α− β

dCds
dt

= Cds

(
αr

α− β
+ (A− s− r)

)
+

iN

α− β
dCdf
dt

= Cdf

(
αr

α− β
− (s+ r)

)
+

iN

α− β
dN

dt
= φ− 2iN (A.38)

which in matrix form looks like

d(C,N)

dt
=


0
φl
0
0
φ

+


s−A 0 0 s 0

0 0 −αr
α−β

−αr
α−β

−2i
α−β

0 0 αr(A−s−r)
α−β 0 i

α−β
0 0 0 αr

α−β − (s+ r) i
α−β

0 0 0 0 −2i



Cs
Cf
Cds
Cdf
N

 .

(A.39)
A particular case of this model is proposed by Fontaine and Barot (2005)

under the assumption that the SOM decomposers are C-limited and the FOM
decomposers are N-limited.

dCs
dt

= (s−A)Cds + sCdf

dCf
dt

= φl − yCf −
iN

α− β
− αrCdf
α− β

dCds
dt

= (A− s− r)Cds + yCf

dCdf
dt

=
iN

α− β
+ Cdf

(
αr

α− β
− (s+ r)

)
dN

dt
= φ+ αrCds + (β − α)yCf − iN (A.40)

which in matrix form looks like

d(C,N)

dt
=


0
φl
0
0
φ

+


s−A 0 0 s 0

0 −y 0 −αr
α−β

−i
α−β

0 y (A− s− r) 0 0
0 0 0 αr

α−β − (s+ r) i
α−β

0 (β − α)y αr 0 −i



Cs
Cf
Cds
Cdf
N

 .

(A.41)
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From all models, this last model is the only one in it is possible that all
eigenvalues of the matrix have real negative part, therefore the system can be
stable and reach steady-state, but this depends on the actual combination of
parameter values.
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