Appendix A.

Analytic estimators for rarefaction (interpolation) of Hill numbers $\left({ }^{q} \hat{H}\right)$ of order $q=0$ (first row of equations), $q=1$ (second row), and $q=2$ (third row), given a reference sample (Chao et al. 2014). The last row gives equations for sample completeness (coverage, \hat{C}) as a function of sample size. In abundance-based rarefaction: n is the reference sample; m is defined as the subsample size for rarefying community; $S_{o b s}$ is the observed species richness in $n ; X_{i}$ is a vector of length $S_{o b s}$, the elements of which are the observed abundances; k is the vector of sampling units, from 1 to m; and $\hat{f}_{k}(m)$ is an unbiased estimator of the number of species detected in exactly m sampling units, where $\hat{f}_{k}(m)=\sum_{X_{i} \geq k} \frac{\binom{X_{i}}{k}\binom{n-X_{i}}{m-k}}{\binom{n}{m}}$, provided that $m<n$, and $k \geq 1$. In sample-based rarefaction: T is the reference sample; t is defined as the subsample size for rarefying community; $S_{o b s}$ is the observed species richness in $T ; Y_{i}$ is the matrix of incidence data, with $i=1$ to $S_{o b s}$ rows and $j=1$ to T columns; k is the vector of sampling units, from 1 to $t ; \hat{U}_{t}$ is an unbiased estimator of the expected total number of incidences (U) in t sampling units, $\hat{U}_{t}=t \times U / T$; and $\hat{Q}_{k}(m)$ is an unbiased estimator of the number of species detected in exactly k sampling units, where $\hat{Q}_{k}(t)=\sum_{Y_{i} \geq k} \frac{\binom{Y_{i}}{k}\binom{T-Y_{i}}{t-k}}{\binom{T}{t}}$, provided that $t<T$, and $t \geq 1$. For the reference sample, the observed Hill number of order q is ${ }^{q} \hat{D}(n)={ }^{q} D_{o b s}=\left[\sum_{X i \geqslant 1}\left(X_{i} / n\right)^{q}\right]^{1 /(1-q)}$ in abundance-based rarefaction, and ${ }^{q} \hat{\triangle}(T)={ }^{q} \triangle_{o b s}=\left[\sum_{k=1}^{t}(k / U)^{q} \times Q_{k}\right]^{1 /(1-q)}$ in incidence-based
rarefaction. The coverage of the reference sample is estimated by $\hat{C}(n)=1-\frac{f_{1}}{n}\left[\frac{(n-1) \times f_{1}}{(n-1) \times f_{1}+2 \times f_{2}}\right]$ in abundance-based rarefaction, dsand $\hat{C}(T)=1-\frac{Q_{1}}{T}\left[\frac{(T-1) \times Q_{1}}{(T-1) \times Q_{1}+2 \times Q_{2}}\right]$ in incidence-based rarefaction.

21

22

	Abundance-based ($m<n$)	Incidence-based ($t<T$)
$q=0$	${ }^{0} \hat{H}(m)=\sum_{k=1}^{m} \hat{f}_{k}(m)=S_{o b s}-\sum_{X i \geqslant 1} \frac{\binom{n-X_{i}}{m}}{\binom{n}{m}}$	${ }^{0} \hat{H}(t)=S_{o b s}-\sum_{Y i \geqslant 1} \frac{\binom{T-Y_{i}}{t}}{\binom{T}{t}}$
$q=1$	${ }^{1} \hat{H}(m)=\exp \left(\sum_{k=1}^{m}\left(-\frac{k}{m} \times \log \frac{k}{m}\right) \times \hat{f}_{k}(m)\right)$	${ }^{1} \hat{H}(t)=\exp \left(\sum_{k=1}^{t}\left(-\frac{k}{\hat{U_{t}}} \times \log \frac{k}{\hat{U_{t}}}\right) \times \hat{Q}_{k}(t)\right)$
$q=2$	${ }^{2} \hat{H}(m)=\frac{1}{\sum_{k=1}^{m}\left(\frac{k}{m}\right)^{2} \times \hat{f}_{k}(m)}$	${ }^{2} \hat{H}(t)=\frac{1}{\sum_{k=1}^{m}\left(\frac{k}{\hat{U}_{t}}\right)^{2} \times \hat{Q}_{k}(t)}$
Coverage	$\hat{C}(m)=1-\sum_{X i \geqslant 1}^{m} \frac{X_{X_{i}}\binom{n-X_{i}}{m}}{n\binom{n-1}{m}}$	$\hat{C}(t)=1-\sum_{Y_{i} \geqslant 1}^{m} \frac{Y_{i}\binom{T-Y_{i}}{t}}{n\binom{T-1}{t}}$

