To better mimic the sampling process, a negative binomial error was added to the abundance counts every time a sample was randomly drawn from the simulated assemblage in the BiogTest randomization algorithm. The negative binomial distribution was used to generate realistic heterogeneity that often results from spatial clustering of individuals and other small-scale processes. In practice this implies that each sample is drawn from a slightly different vector of abundance counts. An example for abundance-based data better illustrate this process. For better reproducibility of this example, we have included the R code that generates it, but note that due to the random nature of the process itself, application of the code will generate each time different results. Let's have two samples with the following counts of observed species abundances.

```
> x <- data.frame(sample1 = c(5, 7, 1, 0, 1), sample2 = c(0, 10, 1, 2, 1))
> X
\begin{tabular}{rrr} 
& sample1 & sample2 \\
1 & 5 & 0 \\
2 & 7 & 10 \\
3 & 1 & 1 \\
4 & 0 & 2 \\
5 & 1 & 1
\end{tabular}
>
```

The total number of individuals in each sample is 14 and 15 respectively. Now let's create a simulated assemblage with a log-normal distribution of species abundances from which to draw random samples:

```
> library(rareNMtests)
> SR <- do.call("rbind", apply(x, 2, chao1))
> mr <- match(max (SR[,2]), SR[,2])
> range.SR <- c(SR[mr, 4], SR[mr, 5])
> richness <- round(runif(1, range.SR[1], range.SR[2]))
> sdlog <- runif(1, 0.1, 3.5)
> com <- rlnorm(richness, 0, sdlog)
> com <- ceiling(com/min(com[com>0]))
> com
```

$[1]$	478	36	12	9	27	51	47	25	54	88	11	22	10	164
16$]$	16	19	1	43	67	3	18							
$>$														
164														

The algorithm will now extract two random samples (with replacement) of 14 and 15 individuals from this assemblage, respectively, with probability weights proportional to the abundance counts in the assemblage. The vector of probabilities is thus the result of adding a negative binomial error to the abundance count of each species in the assemblage (i.e. the expectation μ of the negative binomial). The variance of the negative binomial is:

$$
\operatorname{var}=\mu+\frac{\mu^{2}}{k}
$$

```
> prob1 <- rnbinom(n = length(com), mu=com, size=runif(length(com), 0.01, 25))
> prob1
\begin{tabular}{rrrrrrrrrrrrrrrrrrrr}
{\([1]\)} & 670 & 22 & 6 & 14 & 25 & 0 & 37 & 36 & 77 & 61 & 11 & 19 & 9 & 186 & 394 & 11 & 21 & 2 & 44 \\
{\([20]\)} & 88 & 4 & 28 & & & & & & & & & & & & & & & &
\end{tabular}
> prob2 <- rnbinom(n = length(com), mu=com, size=runif(length(com), 0.01, 25))
> prob2
\begin{tabular}{rrrrrrrrrrrrrrr}
{\([1]\)} & 351 & 51 & 12 & 17 & 31 & 43 & 41 & 24 & 41 & 76 & 13 & 38 & 9 & 228 \\
{\([16]\)} & 14 & 20 & 0 & 95 & 49 & 0 & 23 & & & & & & &
\end{tabular}
```

And now the assemblage is sampled using these vector of probabilities for each of the samples.

```
sample1 <- sample(1:length(com), sum(x[,1]), replace=TRUE, prob=prob1)
sample1 <- data.frame(table(sample1))
colnames(sample1) <- c("species", "sample1")
> sample2 <- sample(1:length(com), sum(x[,2]), replace=TRUE, prob=prob2)
> sample2 <- data.frame(table(sample2))
> colnames(sample2) <- c("species", "sample2")
> df <- merge(sample1, sample2, by="species", all=TRUE)
> df[is.na(df)] <- 0
> df
```

	species	sample1	sample2
1	1	5	0
2	8	1	0
3	9	3	0
4	15	4	11
5	20	1	0
6	14	0	1
7	17	0	1
8	19	0	1

$>$

