
USING SPATIOTEMPORAL STATISTICAL MODELS TO 
ESTIMATE ANIMAL ABUNDANCE AND INFER 

ECOLOGICAL DYNAMICS FROM SURVEY COUNTS

Paul B. Conn1∗, Devin S. Johnson1, Jay M. Ver Hoef1, Mevin B. Hooten2,3,4,
Josh M. London1, and Peter L. Boveng1

1National Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA National Ma-
rine Fisheries Service, Seattle, Washington 98115 U.S.A.

2U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State
University, Fort Collins, CO 80523 U.S.A.

3Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort
Collins, CO 80523 U.S.A.

4Department of Statistics, Colorado State University, Fort Collins, CO 80523 U.S.A.

Appendix B: Details of simulation studies investigating performance of spatiotemporal statistical
models for abundance estimation

We conducted two simulation studies to evaluate the performance of different spatiotemporal

statistical models for estimating animal abundance. In the first, we simulated “generic”

populations, where surveys were assumed to occur over a simple 20 × 20 grid. The advantage of

this approach was that estimator performance could be evaluated using a relatively small number

of grid cells which resulted in relatively fast execution times. It also allowed us to investigate

performance relative to different data generating models, levels of sampling effort, and degree of

change in a hypothetical habitat covariate, thus allowing us to evaluate the robustness of different

spatio-temporal statistical models over a variety of sampling situations.

The second simulation study used habitat covariates, effort, and estimated abundance

from a recent survey of ice-associated seals (see e.g., Conn et al. Online Early) to investigate

estimator performance under a more realistic sampling scenario. The purpose of this study was to

determine whether different classes of spatio-temporal statistical models were likely to produce

reliable estimates of apparent spotted seal abundance in 2012 (apparent in the sense that

1



estimates are presently unadjusted for incomplete detection). We now describe configuration of

each of the simulation studies in greater detail.

1 Simulation study: generic populations

We configured generic simulations such that spatial and temporal variability in animal abundance

was dependent (in part) on a hypothetical covariate. Each simulation involved several steps, as

follows.

1. Generating a spatio-temporal habitat covariate

To start with, we generated a habitat covariate on a 30 × 30 grid by convolving a bivariate 

Gaussian kernel with independent AR1 time series processes occurring at each of m = 36 knots 

located on an even grid around the landscape (Fig. B1). This process is structurally similar to the 

type of spatiotemporal “dynamical process convolution model” described by Calder et al. (2002).

In particular, covariate values for time t are calculated as

xt = 0.5 + log(1 + δ)(t− 1) + Kαt,

where δ is a fixed parameter influencing the degree of contraction or expansion of the habitat

covariate, αt is a vector of length m giving time-specific weights associated with each knot, and

the S ×m dimensional matrix K maps the weights associated with each knot to S-dimensional

space (in this case S = 900 gives the total number of grid cells). The entries in K are

proportional to distance-specific kernel densities used to interpolate between the m knots and the

S spatio-temporal locations being modeled. We set (σ = 5), the distance between knot locations,

and set the ith row and jth column of K to N(dij ; 0, σ2), where N denotes the Gaussian

probability density function and dij gives the distance from the centroid of grid cell i to the

location of knot j. The elements of K are then renormalized so that rows sum to 1.0.

We initialized the weights, α1, by drawing them from an intrinsic conditionally

autoregressive (ICAR) process with precision parameter τ = 15 (see e.g., Rue & Held 2005). We
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then let weights evolve over time according to independent AR1 processes, i.e.,

αt = ραt−1 + ε, (B.1)

where ρ = 0.9IS is an (m×m) matrix with ρ = 0.9 on the main diagonal and zero elsewhere, and

ε is a vector of iid random normal variates with a standard deviation of 0.4. These values were

selected to achieve a habitat covariate that would evolve over time at a reasonable speed (see Fig.

1 in the main journal article for an example). After habitat covariates were generated, we (1)

divided each covariate by the covariate of maximum value for a particular time step (i.e.,

x∗t = xt/max(xt)), and then truncated all negative valued covariates at zero (i.e.,

{x∗st|xst < 0} = 0). This process helped assure that a reasonable range of covariates would be

observed over the range (0, 1), and was an attempt to decrease the likelihood of abundance

predictions outside the range of observed data.

2. Simulating animal abundance conditional on hypothetical habitat covariate

For each simulated landscape, we then simulated spatially and temporally specific abundance

across the landscape. We used three different data-generating models, including (1) an open

population model with restricted dispersal (OPRD), (2) a closed population model with restricted

dispersal (CPRD), and (3) a closed population model with unlimited dispersal (CPUD).

The OPRD and CPRD models were constructed in an identical fashion, the difference

being that OPRD dynamics were simulated over a larger area than was surveyed, while the

CPRD model assumed that surveys covered the entire area. In particular, OPRD dynamics were

simulated over the entire (30× 30) grid of covariate values while surveys were only conducted over

a central (20× 20) grid. By contrast, CPRD simulations started with the inner (20× 20) grid for

generating abundance data. In effect, the OPRD generating model allows animal abundance to

cross the boundaries of the the survey area from time step to time step, while CPRD does not.

Underlying dynamics proceeded as follows:

A. Initialize latent abundance at the first time step as log(λ1) = Xβ + η + ε, where X denotes

an (S × 3) design matrix, β give regression parameters, η give spatial random effects, and ε

represent iid Gaussian error. In particular, we include linear and quadratic effects of the
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habitat covariate, such that the rows of X are given by [1 xs1 x2s1] and set β = [3 10 − 10]′

so that expected abundance would have a unimodal, quadratic relationship with the

hypothetical covariate (Fig. B2). Spatial random effects were simulated by drawing from an

ICAR(τ = 15) distribution, and the variance for exchangable, iid errors (i.e., ε) was set to

0.01. This procedure resulted in true abundances that were in the 30,000 - 80,000 range.

B. Simulate latent abundance after time 1 via a resource selection model operating on the real

scale. In particular, λt = Mtλt−1, where Mt is defined in exactly the same manner as for 

the OPRS model presented in Appendix S1. Entries of the transition matrix Mt depend on 

the relative favorability of a given cell as a function of the habitat covariate, and the 

Euclidean distance between the centroid of the originating cell to the target cell. We again 

used a linear regression coefficient of 10.0 and a quadratic regression coefficient of -10.0 

(Fig. B2) as a measure of habitat favorability, and used a standard deviation of 2.0 cells to 

set the bivariate Gaussian redistribution kernel (see Appendix A1).

We note that this specification is quite similar to that used in parameter estimation using the OPRS 

model (Appendix A1). However, an important distinction is that the resource selection model occurs 

here on the real scale (i.e., Mt operates on λ), while in the OPRS estimation model it operates of the 

log scale. This distinction is important, in that abundance can be held roughly constant during 

simulations (either on the central (20 × 20) grid for CPRD or the full (30 × 30) grid for OPRD). 

Also, conditional on abundance at the first time step, evolution of the latent abundance process is 

deterministic in the simulation setting, but not in the estimation setting.

The CPUD model was constructed using the same closed population ideal free (CPIF) 

formulation as described in Appendix A1. Namely, abundance at time t was simulated as

λt ∼ Multinomial(λ;πt),

where we set N = 70, 000 and calculated πt as

πt ∝ exp(β1xt + β2x
2
t + Kαt + εt). (B.2)
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Here, we include spatio-temporal random effects through process convolution using the same set

of equations as we did for simulating habitat covariates. In particular, K is set as before, and αt

evolve as in Eq. B.1. For simulating abundance data, we once again set β1 = 10 and β2 = −10.

We set initial α by drawing them from an ICAR(τ = 15) distribution, and set the AR1

autocorrelation parameters for α to ρ = 0.5 and σ = 0.1. The precision for exchangeable errors

(i.e., the εt in Eq. B.2) was set to 20. These values were subjective but not arbitrary; they were

obtained via trial and error with the objective that latent abundance evolve neither too fast nor

too slow.

3. Simulating counts from transect surveys

At each time step of simulation, transects were simulated as straight, vertical lines across the

entire study area, beginning at randomly selected grid cells along the southern terminus (see e.g.,

Fig. 1 of main article). Each transect thus covered 20 grid cells; we configured simulations such

that transects covered 5% of each grid cell they passed through. In the event of > 1 transect per

time step, starting grid cells on the southern terminus were sampled via a uniform distribution

without replacement. Transect placement was re-randomized at each time step. Although

strategic options for spatially balanced sampling would have been possible here, our experience

with conducting aerial transect surveys in dynamic environments is that logistical factors such as

weather often prevent one from adhering to ‘optimal’ sampling designs. Random transect

placement was an attempt to mimic such a situation.

Following selection of the grid cells and times where sampling occurred, we drew animal counts

from a Poisson distribution at times and locations where sampling was conducted:

Cs,t ∼ Poisson(0.05λs,t).

4. Estimation of animal abundance

For each simulated dataset we used 1-4 estimation models (see Simulation design and 

performance metrics) to estimate animal abundance. These included AST, CPIF, OPRS, and 

STPC (for further detail on these models and prior distributions used, see Appendix A1). Each 

model was provided with the spatio-temporal covariates used in in abundance generation for use
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in the linear predictor part of each estimation model.

1.1 Simulation design and performance metrics

We conducted a small simulation study where simulation replicates varied by (1) the number of

transects conducted per time step (1 or 5), and (2) the data generating model (CPRD, CPUD, or

OPRD). We generated 100 simulated animal count data sets per design point, each of which had

a different value of δ (recall that δ controls the propensity for the habitat covariate to decrease or

increase as a function of time). In particular, we let δ range from -0.02 (a two percent expected

decrease in the habitat covariate between times steps) to 0.02 in equally spaced increments.

Unfortunately, estimating abundance for each such simulation replicate with each type of

estimation model was not feasible owing to computational limitations. To set the number of

simulation replicates analyzed by each estimation method, we first conducted a single analysis

with each combination of estimation model and number of transects. Desiring to have Monte

Carlo error coefficient of variation (CV) below 0.01, we calculated the number of MCMC

iterations (n) necessary to obtain this goal. This was accomplished using the relation

n = 10, 000(1 + 2
∑
k

ρ̂k)σ̂2N N̂
−2,

where ρ̂k indicates lag k autocorrelation, σ̂2N gives posterior variance for estimated abundance, and

N̂ gives the posterior mean for abundance. We then adjusted this estimate upwards depending on

appearance of MCMC trace plots to arrive at MCMC run times (Table B1). Including a

“burn-in” phase and a 5,000 iteration tuning phase for each analysis, we then estimated requisite

run times for each analysis type for the two levels of sample coverage (1 or 5 transects; Table B1).

Examination of Table B1 indicated extremely slow run times for the OPRS model, and

that the AST model was appreciably faster than the CPIF or STPC models. Longer run times

were needed when there were fewer data (i.e., when there was only one transect for time step).

We thus limited the number of simulation replicates analyzed for certain combinations of

estimation model and sample coverage (Table B1). For instances where only 10 simulations were

analyzed, we chose data sets to cover a range of δ values (by selecting simulations
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5, 15, 25, . . . , 95); for those employing 19 simulations, simulations 5, 10, 15, . . . , 95 were selected.

For each design point, we calculated proportional relative bias (PRB), mean squared

error (MSE), coefficient of variation (CV), and 90% posterior credible interval coverage (Cov90).

Proportional bias and mean squared error were calculated differently depending upon the data

generating model (open or closed) and estimation model (open or closed). When the generating

model was closed but the estimation model was open (i.e., different estimates of abundance were

available for each time step), we calculated a single best “average abundance estimator,” N̄ , to

calculate PRB and MSE. In particular, we used numerical optimization (via the ‘BFGS’

minimizer in function optim in the R programming environment R Development Core Team

2013) to solve for the N̄ that minimizes

E

[∑
t

(N̂
(m)
t − N̄)2|Data

]
,

where N̂
(m)
t is a posterior realization of abundance at time t (e.g., at the mth iteration of the

Markov chain). This approach seeks to minimize Bayes risk for mean squared error loss. To

calculate PRB and MSE when an open population model was used to simulate abundance, we

simply took the grand mean of PRB and MSE over simulation run and time step. We summarized

CV by (a) taking the median CV (posterior SE / posterior mean) with respect to time step for

each individual simulation, and (b) averaging median CV across simulation runs. For Cov90, we

again took the grand mean of 90% credible interval coverage across both time and simulation run.

In addition to typical summary statistics, we also analyzed whether proportional bias was

a function of the strength of habitat changes. In particular, we used simple linear regression to

analyze whether bias was a function of δ, the expected proportional change in simulated habitat

covariate values (recall this value ranged from -0.02 to 0.02 depending on simulation run).

1.2 Results

Estimator performance summaries are provided in Table B2. Discussion of these results is

provided in the main article text. The only design point where there was evidence for a non-zero

regression coefficient relating proportional bias to δ was for the STPC estimation model, OPRD
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data generating model, and one transect per time period. In this case, there was a significantly

negative slope coefficient (p < 0.001), indicating that when the habitat covariate is decreasing,

one tends to overestimate abundance, and when the habitat covariate is decreasing one tends to

overestimate abundance. All twenty other design points had p > 0.05.

2 Simulation study: spotted seals in the eastern

Bering Sea

Initial analyses of seal abundance in the Bering Sea (e.g., Conn et al. Online Early, Ver Hoef

et al. 2014) indicated several important predictors of abundance, including linear and quadratic

effects of sea ice concentration (ice), distance from 1000m depth countour (contour), and distance

from the southern ice edge (edge). Spotted seals exhibited the highest concentrations of

abundance near the southern ice edge, and were rare in the northern reaches of the surveyed area.

We thus developed formulations for spotted seal abundance that mirrored these findings (Fig.

B3). We initially considered using all three data generating models to simulate spotted seal

abundance; however those employing resource selection (CPRD,OPRD) led to unrealistic

distributions. In particular, the rapid dissipation of ice in Bristol Bay often led to large,

unrealistic abundance levels in individual sample units. As such, we only used the CPUD data

generating model (as defined in preceding sections) to simulate spotted seal abundance. We

modeled fixed effects for abundance at time t using the following general structure:

θt = 20ice − 13ice2 − 0.7edge − 0.7edge0.5 − 2.5contour . (B.3)

Note that θt is in log space, that the edge and contour covariates were standardized to have a

mean of 1.0 over the study area. We set expected abundance for the CPUD model to 280,000.

This value is approximately half of estimated abundance from a previous analysis of seal data

(Conn et al. Online Early) to reflect incomplete detection of seals on sea ice.

In addition to fixed effects for abundance, we again included spatiotemporal random 

effects in the CPUD model. These were induced in the same manner as for the “generic”
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simulations, albeit with a different set of knots (Fig. B4). Sample units (grid cells in Fig. B4)

were defined at the resolution of sea ice imagery, which was obtained from the National Snow and

Ice Data Center, Boulder, CO on an EASE Grid 2.0 projection. Each sample unit is

approximately 625km2. We simulated a total of 100 data sets.

For each simulation, we used the same procedure as for the “generic” simulations to

simulate transect counts, conditioning on the day, time, and effective area sampled by each

transect. Transect counts were then analyzed by the three estimation models (AST, CPIF,

STPC); each was provided with the same set of covariates and “correct” fixed effects model

structure. We then used pilot runs to determine adequate MCMC run time lengths, requisite

computing time, and to determine a reasonable number of simulations to analyze for each

estimation model (Table B3).

For each simulation, we used the same set of prior distributions specified in Appendix A1 

and computed the same set of performance measures as for the “generic” simulation study. However, 

in this case we also computed these measures on a day-by-day basis. In particular, we were 

interested in whether estimates made for April 27 (the only day a flight was made into the epicenter 

of simulated seal abundance along the southwestern ice edge) were more accurate than “average” 

estimates for the entire time series.

2.1 Results

Simulation performance results for “Bering Sea” simulations are presented in Table B4.
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Table B1. Execution details for MCMC analysis of spatiotemporal abundance data as a 
function of estimation model and number of transects for “generic” simulations. Estimation 
model and transects/time step are indicated in columns (e.g., AST-5 indicates the AST 
model applied to data from 5 transects/time step). Presented are the minimum number of 
MCMC iterations needed to achieve a Monte Carlo CV of 0.01 (‘Min iterations’), the number 
of MCMC iterations used to summarize the posterior distribution (‘MCMC length’), the 
number of additional iterations at the beginning of the MCMC chain that are discarded as 
a burn-in (‘Burn-in’), the number of additional iterations conducted per simulation in order 
to tune Metropolis-Hastings proposal distributions prior to start of the main MCMC run 
(‘Adapt length’), the estimated number of hours per simulation (‘Hrs/sim’), and the actual 
number of simulations that were analyzed for each estimation model (‘# Sims’).

Estimation model
AST-1 AST-5 CPIF-1 CPIF-5 OPRS-1 OPRS-5 STPC-1 STPC-5

Min iterations: 13,000 1,014 810 60 45,081 6,218 2560 520
MCMC length: 20,000 10,000 10,000 10,000 50,000 10,000 10,000 10,000

Burn-in: 10,000 10,000 5,000 5,000 10,000 10,000 5,000 5,000
Adapt length: 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000

Hrs/sim: 0.23 0.17 1.5 1.5 71.5 27.5 1.5 1.5
# Sims: 100 100 19 19 0 10 19 19
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Table B2. Performance of posterior summaries of abundance for MCMC analysis of 
spatiotemporal abundance data for “generic” simulations. In particular, we report proportion 
relative bias (PRB), 90% credible interval coverage (Cov90), coefficient of variation (CV), 
and relative mean square error (rMSE) as a function of estimation model (Est.mod), number 
of transects per time step, and generating model (Gen.mod). Details on performance metric 
calculations are provided in the text.

Est.mod Transects Gen.mod PRB Cov90 CV rMSE
AST 1 Transect CPRD 0.02 0.73 0.07 16.4
AST 1 Transect CPUD 0.00 0.80 0.06 2.8
AST 1 Transect OPRD 0.01 0.78 0.07 43.6
AST 5 Transects CPRD -0.00 0.76 0.04 0.9
AST 5 Transects CPUD 0.00 0.86 0.04 0.4
AST 5 Transects OPRD 0.00 0.80 0.03 6.8
CPIF 1 Transect CPRD 0.01 0.61 0.03 12.7
CPIF 1 Transect CPUD 0.01 0.84 0.03 6.5
CPIF 1 Transect OPRD -0.00 0.48 0.03 22.2
CPIF 5 Transects CPRD 0.00 0.72 0.01 0.6
CPIF 5 Transects CPUD 0.00 0.89 0.01 0.4
CPIF 5 Transects OPRD 0.01 0.18 0.01 14.3
OPRS 5 Transects CPRD 0.02 0.88 0.05 1.4
OPRS 5 Transects CPUD 0.03 0.85 0.05 5.7
OPRS 5 Transects OPRD 0.02 0.92 0.05 7.5
STPC 1 Transect CPRD 0.02 0.64 0.05 8.1
STPC 1 Transect CPUD 0.02 0.57 0.06 9.9
STPC 1 Transect OPRD 0.01 0.70 0.05 21.0
STPC 5 Transects CPRD 0.00 0.57 0.02 0.4
STPC 5 Transects CPUD 0.00 0.34 0.02 0.4
STPC 5 Transects OPRD -0.00 0.54 0.02 6.6
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Table B3. Execution details for MCMC analysis of spatiotemporal abundance data for 
spotted seal simulations. For each estimation model, we present the minimum number of 
MCMC iterations needed to achieve a Monte Carlo CV of 0.01 (‘Min iterations’), the num-
ber of MCMC iterations ultimately used to summarize the posterior distribution (‘MCMC 
length’), the number of additional iterations at the beginning of the MCMC chain that are 
discarded as a burn-in (‘Burn-in’), the number of additional iterations conducted per simu-
lation in order to tune Metropolis-Hastings proposal distributions prior to start of the main 
MCMC run (‘Adapt length’), the estimated number of hours per simulation (‘Hrs/sim’), and 
the actual number of simulations that were analyzed for each estimation model (‘# Sims’).

Estimation model
AST CPIF STPC

Min iterations: 9,281 7,400 130,548
MCMC length: 30,000 60,000 160,000

Burn-in: 10,000 10,000 10,000
Adapt length: 5,000 5,000 5,000

Hrs/sim: 0.3 9.3 22.0
# Sims: 100 10 10

Table B4. Performance of posterior summaries of abundance for MCMC analysis of 
spatiotemporal abundance data for simulations constructed to resemble seal sampling in the 
Bering Sea. In particular, we report proportion relative bias (PRB), 90% credible interval 
coverage (Cov90), coefficient of variation (CV), and relative mean square error (rMSE) as a 
function of estimation model (‘Est.mod’). Separate performance summaries are presented for 
the average abundance estimator (i.e., Est.type = N¯ ) and for posterior estimates of 
abundance on April 27, 2012 (the day a flight transited over the epicenter of spotted seal 
abundance). Details on performance metric calculations are provided in the text.

Est.type Est.mod rMSE PRB Cov90 CV
27 Apr AST 0.56 0.03 1.00 0.18
27 Apr CPIF 0.43 0.06 0.80 0.06
27 Apr STPC 0.79 0.03 1.00 0.11
N̄ AST 7.45 0.26 0.77 0.26
N̄ CPIF 0.44 0.06 0.80 0.06
N̄ STPC 0.60 0.04 0.86 0.23
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Figure B1. Spatial grid and knot positions (blue points) for simulating spatiotemporal 
variation in a hypothetical habitat covariate.
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Figure B2. Relationship between expected initial abundance (λ) and a simulated covariate 
for “generic” spatiotemporal abundance simulations. The absolute relationship applies to 
initial abundance (i.e., at the first time step) for both restricted dispersal data generating 
models (OPRD and CPRD); the same relative relationship (ignoring the intercept) is applied 
to the evolution of abundance via habitat selection for OPRD and CPRD, and to multinomial 
cell probabilities for the unlimited dispersal data generating model (CPUD).
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Figure B3. An example of a single spotted seal simulation, whereby 2012 habitat covariates 
(e.g., daily sea ice concentration, displayed in the first row of panels) are used to simulate 
animal abundance (second row of panels). Counts are then generated using effort information 
from 2012 transect surveys (third row of panels), and animal abundance is estimated via a 
spatiotemporal statistical model (fourth row of panels). Each column depicts results for a 
given time step. Day one of simulation corresponded to April 10, 2012, and the final day of 
simulation (day 29) corresponded to May 8, 2012. In this particular simulation, abundance 
was simulated according to the closed population unlimited dispersal (CPUD) specification, 
while estimation was conducted assuming the closed population, ideal free (CPIF) model 
(which included spatiotemporal random effects).
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Figure B4. Sample units (grid cells) and knots (red dots) used in spatiotemporal analysis 
of spotted seal transect counts.
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