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Appendix A: Gibbs sampling for estimating spatiotemporal abundance from survey counts

For each spatiotemporal model fit to animal survey counts, we used Gibbs sampling (see e.g., 

Gelman et al. 2004) to obtain Markov chain Monte Carlo samples from the posterior distribution 

of model parameters given the data. Parameters were iteratively sampled from their full 

conditional distributions, some of which were available in closed form, and some of which had to be 

sampled using Metropolis-Hastings (MH) steps. For each spatiotemporal model structure 

considered, we provide a fuller mathematical treatment than in the main manuscript, provide 

details on prior distributions, and describe the full conditional distributions necessary for Gibbs 

sampler construction. Throughout this treatment, we use several standard statistical conventions. 

For instance, we use the bracket notation [X] to denote the distribution (e.g., through a joint 

probability density function) of X, [X|Y ] to denote the conditional distribution of X given Y , 

and bold symbols to denote vectors or matrices of parameters. We use prime notation (e.g., X′) 

to denote matrix transpose, while matrix inverse is denoted by X−1. Unless noted differently, we 

use a Gaussian kernel centered at previous parameter values to generate parameter proposals for
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MH updates, with a standard deviation tuned to yield an acceptance rate of 30 − 40% (Gelman et 

al. 2004). Software to implement these models on real data sets are provided in an online 

supplement, and are available online at https://github.com/NMML/STabundance.

1 Additive space-time (AST) model

The first type of spatiotemporal model that we implemented was a separable space-time model where 

spatial and temporal random effects are modeled independently. Ver Hoef & Jansen (2007) used such 

a model to successfully model harbor seal abundance from survey counts. This formulation is 

attractive due to the potentially small number of random effect parameters relative to a model with 

space-time interactions, but is restrictive in the sense that it does not permit residual spatial error to 

vary over time. Assuming that count data are available on spatially referenced sampling units, we 

write the joint posterior distribution of latent abundance (µ) and other model parameters given data 

as

[µ,θ|C,o] ∝ [C|o,µ][µ|θ][θ], (A.1)

where θ denote the collection of all parameters other than latent abundance, C denote temporally

and spatially referenced animal counts, and o denote linear model offsets used to encapsulate the

amount of area sampled in different sampling units. Note also that our convention throughout

this treatment is to omit covariate data x from distributional expressions (for instance, µ may

also be dependent on habitat covariates to help predict abundance, as described later).

The observation model [C|o,µ] describes how count data arise from different levels of

sampling effort and latent abundance parameters. For purposes of the AST model, we make the

assumption that count data are Poisson distributed:

[C|o,µ] ≡ Poisson(λ), where

λ = exp (o + Hµ) . (A.2)

Here, the matrix H is constructed in such a manner to select elements of the full set of space- and
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time-specific µ values for which sampling effort is actually applied.

We adopt a log-linear formulation for the process model [µ|θ,x], and in this instance

include additive spatial and temporal random effects:

µt = Xtβ + η + γt + εt.

In particular, time-specific vectors of the log of abundance intensity (µt) are written in a

regression-like framework that includes a time-specific design matrix Xt, regression parameters β,

spatial random effects η, temporal random effects, γt, and residual Gaussian-distributed error.

To impose spatial structure on η, we employed a process-convolution formulation (see

e.g., Higdon 1998, Calder et al. 2002), whereby

η = Kα. (A.3)

Here, the 1 × m dimensional vector α holds spatial random effects on a reduced parameter space. 

The reduced parameter space is achieved by distributing a total of m knots evenly across the 

landscape, and associating a Gaussian kernel with each such knot. Under this formulation, the 

random effects α are equivalent to weights on each of the Gaussian kernels. The S × m 

dimensional matrix K maps the random effects (or weights) to S-dimensional space. The entries 

in K are proportional to distance-specific kernel densities used to interpolate between the m knots 

and the S spatiotemporal locations being modeled. With rich datasets, it is possible to 

computationally intensive algorithms to optimize values for the elements of K (and to induce 

anisotropy), but we will typically not be so lucky in ecological applications. Thus, in subsequent 

examples we adopt the commonly used practice of setting the standard deviations for each kernel 

(σ) equal to the distance between knot locations, and setting the ith row and jth column of K to 

N(dij ; 0, σ2), where N denotes a standard Gaussian probability density function and dij gives the 

distance from the centroid of sampling unit i to the location of knot j. The elements of K are 

then renormalized so that rows sum to 1.0. As is typical in such applications, we model the 

random effects α, as iid Gaussian with mean zero and precision 1/τη.

We account for temporal autocorrelation by assigning an RW2(τγ) prior distribution (see
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e.g., Rue & Held 2005, section 3.4) to temporal random effects. Implemented using Gaussian

Markov random field (GMRF) machinery (again see Rue & Held 2005, for a thorough treatment),

this prior imposes temporal dependence among the γ and a greater degree of smoothness than a

simpler RW1 structure (a potentially useful feature for analysis of typically sparse ecological

datasets).

We must of course assign prior distributions to the lowest level parameters in θ in order

to conduct Bayesian inference. Our strategy is to use the following choices:

β Regression parameters MVN(0, (τβX
′X)−1)

τη, τε, τγ Gaussian precisions Gamma(1.0, 0.01).

Here, we use MVN to denote the multivariate normal distribution, and set τβ = 0.01 in all

applications. We chose 1.0 and 0.01 for the shape and rate parameters on the conjugate Gamma

prior for precision parameters because these values make the prior reasonably flat near the origin,

which seems to impart a greater degree of stability in estimation than many other common

choices.

1.1 Bayesian analysis of the AST model

We used Gibbs sampling to cycle through updates of different groups of parameters and latent

variables. This process involves sampling from the so-called full conditional distributions of these

parameters (Gelman et al. 2004), which are specified as follows:

1. Updating µ for surveyed sample units

For each sample unit s surveyed at a given time t, µs,t is updated with a MH step, with full

conditional

[µs,t|·] ∝ Normal(µs,t; Xs,tβ + ηs + γt, τ
−0.5
ε )× Poisson(Cs,t, exp(os,t + µs,t)).

2. Updating β

The full conditional distribution for β is available in closed form; we use a Gibbs step to sample
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from

[β|·] ≡ Normal((X′X)−1X′(µ− η − γ), (X′X)−1(τε + τβ)−1).

Note that only surveyed sample units are included in this update (e.g., the design matrix X and

random effect vectors are constructed using sample units at times and locations where surveys are

conducted).

3. Updating τε

The full conditional distribution for the precision of exchangable errors is also available in closed

form as

[τε|·] ≡ Gamma(0.5n+ 1.0, 0.5∆′∆ + 0.01),

and can be simulated from directly. Here, ∆ = µ− (Xβ + η + γ), and once again we only use

surveyed sample units to construct the elements of each matrix and vector.

4. Updating α

The full conditional distribution for α is available in closed form as

[α|·] ≡ MVN(mα,vα),

(where MVN denotes the multivariate normal probability density function) and can also be

simulated from directly. The variance-covariance matrix vα of the full conditional can be written

as

vα = (K′Kτε +D(τη))
−1,

where D(τη) here gives an m×m diagonal matrix with diagonal entries all equal to τη. The mean

of the full conditional is given by

mα = vατεK
′(µ−Xβ − γ)
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As in previous steps, we only use surveyed sample units to construct the elements of each matrix

and vector included in this full conditional.

5. Updating τη

The precision τη is also available in closed form and can be simulated directly via the full

conditional

[τη|·] ≡ Gamma(0.5m+ 1.0, 0.5α′α+ 0.01).

6. Updating γ

The full conditional for temporal random effects is also available in closed form as

[γ|·] ≡ MVN(mγ ,vγ)

and can be simulated directly. The variance-covariance matrix vγ can be written as

vγ = (τεZ
′Z + τγQ)−1,

where Z is an (n× T ) design matrix linking each observed count with an associated time step

(thus the elements of Z, zij , are 1.0 if observation i was obtained at time step j and zero

otherwise), and where Q is the structure matrix for an RW2 intrinsic GMRF (see Rue & Held

2005, section 3.4). The mean of the full conditional is given by

mγ = vγτεZ
′(µ−Xβ − η).

7. Updating τγ

The precision τγ is also available in closed form and can be simulated directly via the full

conditional

[τγ |·] ≡ Gamma(0.5T + 1.0, 0.5γ ′Q′γ + 0.01).

Generating posterior predictions of abundance
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To predict animal abundance in locations and times that were not sampled, we first sampled µ as

µ ∼ Normal(Xβ + η + γ, τ−1ε ),

where the design matrix X and vectors µ, η, and γ are in this case understood to be composed of

unique times and sampling units which are not surveyed. Predictions of abundance across the

grid can then be made using

Nst ∼ Poisson(As exp(µs,t),

where As gives the area of sample unit s relative to the mean sample unit area. Predictions of

animal at each time step can simply be calculated as N =
∑

sNs,t.

2 Spatiotemporal process convolution (STPC) model

The STPC model shares many similarities with the AST model, but allows for spatiotemporal 

interactions. We start with the same general structure and observation model as for the AST 

model, as given by eqns. A.8 & A.2. However, the log of abundance intensity is in this case 

written as a function of a spatio-temporal effect, κs,t:

µ = Xβ + κ+ εt.

As before, we will write the κ as a function of spatiotemporal parameters on a reduced 

dimensional space associated with m knots placed evenly across the landscape, writing

κ = Lα.

However, in this case, there are a total of mT αkt values (one for each knot and time step), and L

is an (ST ×mT ) matrix used to map spatio-temporal grid cells to respective αkt values. The

entries of L include values from the K matrix from the previous section, rearranged to pull off
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appropriate values of α, and is constructed as follows:

L =



K11 0T−1 K12 0T−1 . . . K1m 0T−2 0

K21 0T−1 K22 0T−1 . . . K2m 0T−2 0

...
...

...
...

...
...

...
...

KS1 0T−1 KS2 0T−1 . . . KSm 0T−2 0

0 K11 0T−1 K12 0T−1 . . . K1m 0T−2

0 K21 0T−1 K22 0T−1 . . . K2m 0T−2
...

...
...

...
...

...
...

...

0 KS1 0T−1 KS2 0T−1 . . . KSm 0T−2
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

0T−1 KS1 0T−1 KS2 0T−1 . . . 0T−1 KSm



.

Here, 0x denotes an all zero row vector of length x. We allow the αkt parameters to change

smoothly over time by giving αkt values at each knot k an RW2 Gaussian Markov random field

prior distribution (Rue & Held 2005). However, the RW2 prior is degenerate by an order of two;

we restore propriety by following the suggestion of Johnson et al. (2013) and including separate

intercept and slope terms for the αkt parameters at each knot, giving these intercept and slope

terms proper priors. In particular, we model

α = Xrw2
0 βrw20 + Xrw2

1 βrw21 +$,

where Xrw2
0 is a design matrix for the intercept term associated with each knot, Xrw2

1 is an design

matrix associated with the linear slope effect for each knot, βrw20 give intercepts for each knot,

βrw21 give slope parameters for each knot, and $ ∼ N (0, ταQ∗) denote random effects with
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precision parameter τγ and a (mT ×mT ) block diagonal structure matrix:

Q∗ =



Q 0 . . . 0

0 Q . . . 0

...
...

. . .
...

0 0 . . . Q


(Q being the “standard” RW2 structure matrix for a single time series). For each knot k, the $

are constrained to have a mean and slope of 0. We specify prior distributions for regression and

Gaussian precision parameters in the same manner as for the AST model (cf., eqn. A.9), but

impose informative priors on the βrw20 and βrw21 parameters. In particular, for all of our

applications, we let each of element of βrw20 have a N (0, τ−1β0 ) prior distribution, and each element

of βrw21 have a N (0, τ−1β1 ) prior. We selected τβ0 = 1 and τβ1 = 10 so as to permit considerable

unmodeled spatiotemporal variation in the log of abundance intensity, while providing enough 

structure to limit the chance of extrapolating “past the range of observed data” for times and 

locations where the density of sampling efforts is low.

2.1 Bayesian analysis of the STPC model

Bayesian analysis of the STPC model largely followed the approach used for AST model, with the 

exception that instead of separate spatial (η) and temporal (γ) effects, there is a single

spatiotemporal effect, κ. In fact, steps 1-3 of the STPC Gibbs sampler are exactly the same as for the 

AST model, as is the approach for generating posterior predictions of abundance, and simply require 

placing η + γ with κ. The remaining steps are as follows:

4. Updating βrw20 and βrw20 :

To update knot-specific intercept and slope parameters, we first let Xrw2 = [Xrw2
0 Xrw2

1 ],

βrw2 = [βrw20 βrw21 ]′, and Σ−1 = D(1τβ0 1τβ1), where D denotes a diagonal matrix, and 1 is a

column vector of length m. The full conditional distribution for βrw2 is then available in closed

form as

[βrw2|·] ≡ MVN(mb,vb), where
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v−1b = (LXrw2)
′(LXrw2)τε + Σ−1, and

mb = vbτε(LXrw2)
′(µ−Xβ − L$).

6. Updating $

The full conditional distribution for $ is also available in closed form as

[$|·] ≡ MVN(m$,v$), (A.4)

and can also be simulated from directly. The inverse of the variance-covariance matrix vα for the

full conditional can be written as

v−1α = (L′Lτε + ταQ∗)−1,

where Q∗ gives the mT ×mT block diagonal matrix defined in the previous section. The mean of

the full conditional is given by

mα = vατεL
′(µ−Xβ − LXrw2βrw2).

For each knot, we impose a zero mean and zero slope constraint on the αk· using “conditioning by

Kriging” (cf., Rue & Held 2005, , Eq. 2.30). In particular, we first simulate $ using the

unconstrained distribution given in Eq. A.4. We then calculate a constrained sample $̆ as

$̆ = $ − v−1α A′(Av−1α A′)−1A$,

where A = (X′rw2Xrw2)
−1X′rw2.

6. Updating τα

The precision τη is also available in closed form and can be simulated directly via the full

conditional

[τη|·] ≡ Gamma(0.5mT + 1.0, 0.5α′α+ 0.01).
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3 Open population resource selection (OPRS) model

As with the AST and STPC models, the OPRS formulation makes use of a Poisson observation

model, such that

Cs,t ∼ Poisson(λs,t).

However, we alter the formulation for λs,t to allow for dynamical resource selection. In particular,

we set

λs,t = exp(os,t + Zs,t), where

Zt ∼ MVN(µt,ΣZ) and (A.5)

µt =


X1β + η + ε1 if t = 1

Mtµt−1 + γt + εt if t > 1.

(A.6)

Here, Σz = τ−1z I is a diagonal covariance matrix, X1 is a design matrix specific to the time step

at which initial surveys are conducted, and other parameters are defined in the same manner as

for the AST model. After the first time step, changes in abundance between time steps are

governed by a resource selection-based transition matrix Mt, and also subject to γt, a temporally

autocorrelated random effect (as in previous models εt is Gaussian white noise). The astute

reader may notice that we have included Gaussian error in two places (i.e., in both eqns A.5 and

A.6). We also model γt using an AR1 process instead of an RW2 process. These modifications

were made to increase the efficiency of MCMC computation (see below).

To construct an ecologically plausible transition matrix Mt, we appeal to discrete-space

resource selection theory employing weighted distributions (cf., Patil & Rao 1978, Lele & Keim

2006, Johnson et al. 2008). In such applications, the probability of transitioning from a particular
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location a at time t− 1 to location b at time t is given as

ψabt =
wb,tϕa,b∑
sws,tϕa,s

.

This formulation involves two components: a measure of habitat preference for location s at time

t (ws,t), and a redistribution kernel consisting of the elements ϕa,s. The redistribution kernel

describes animal movement in absence of a gradient in habitat quality. We use a truncated,

symmetric normal distribution kernel to summarize ϕa,s in all applications, thus approximating

simple Brownian (diffusive) movement:

ϕa,b ∝ Normal(d(a, b), τ−1d ),

Here, d(a, b) simply gives the Euclidean distance between the centroid of sample units a and b,

and τd is a precision parameter to be estimated. We specify further structure on ws,t using a

log-linear formulation:

log(wt) = Xtβ,

where the design matrix Xt is allowed to vary over time to reflect changing environmental and

habitat covariates. An intercept is omitted from Xt as it is not identifiable.

The matrix Mt is constructed using values of ψabt in a computationally efficient

framework. In particular,

Mt = (W−1
t ϕtIwt)

′, (A.7)

where each row a of the S × S matrix ϕt holds entries corresponding to ψabt (b ∈ {1, 2, . . . , S}),

and Iwt is a diagonal matrix with elements wt along the main diagonal. The Wt matrix provides

normalization (i.e., so all rows of Mt sum to one), and is calculated as Wt = ϕtIwt1, where 1 is

an (S × 1) vector with each element equal to 1.0.

The previous formulation of the OPRS model induces a joint posterior distribution
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specified by

[Z,µ,θ|C,o] ∝ [C|o,Z][Z|µ,θ][µ|θ][θ], (A.8)

where we use θ to denote the set of parameters consisting of {α,β, τd, τη, τγ , τz}.

To analyze the OPRS model, we need to assign prior distributions to several model

parameters. We selected the following priors for all analyses:

βi Regression parameters Normal(0, 100)

τε, τη, τγ , τd Gaussian precisions Gamma(1.0, 0.01)

σ AR1 parameter Uniform(0.0, 1.0)

3.1 Bayesian analysis of the OPRS model

1. Updating Z

The full conditional distribution for Z differs depending on whether surveys occur in site s at time

t. Letting St denote the set of sampling units surveyed at time t, and Ut denote the set of

sampling units not surveyed at time t:

[Z|·] ≡


Poisson(Cs,t; exp(os,t + Zs,t))×Normal(Zs,t; 0, τ−1z ) if s ∈ St

Normal(Zs,t; 0, τ−1z ) if s ∈ Ut.

Thus, for unsurveyed cells, Zs,t can be simulated directly from a normal distribution, while

another approach is needed if s ∈ S. Our approach in this study is to use separate

Langevin-Hastings steps (see e.g., Givens & Hoeting 2005, section 7.1.4) for each time step t to

simulate values of Zt for which s ∈ St. The Langevin algorithm exploits the first derivative of the

log of the full conditional for efficient proposal generation. The algorithm was tuned to achieve

target acceptance rates of 20-30%, a desirable range for higher dimensional block updates

(Gelman et al. 2004).

2. Updating µ

In order to update µ, we make use of a forward filtering, backward sampling algorithm
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formulated for state space time series models (Durbin & Koopman 2002). This algorithm makes

use of Kalman filtering/smoothing methodology, but works with “disturbances” (the Gaussian

errors) rather than the actual state and observation vectors to speed up computation. This

approach requires Gaussian errors on “state” and “observation” vectors. To make use of this

algorithm, we first make several adjustments. First, we write an expanded state vector as

Θt =

 µt

γt

 ,
and define an expanded transition matrix as

Mt =

 Mt 1

0 σ

 ,
where 1 is a length S column vector of ones, and 0 is a length S row vector of zeros. This change

of notation allows us to write system dynamics in terms of familiar Gaussian state and

observation processes amenable to processing by the Kalman filter:

Θt = MtΘt−1 + Et, (A.9)

Zt = HtΘt + εt. (A.10)

Here, the S × (S + 1) dimensional matrix Ht maps Θ→ Z, and Et = [εtδt], where

δt ∼ Normal(0, τ−1γ ). Of course, we do not actually observe Zt either, but can still use the Kalman

filtering machinery to provide efficient MCMC updates. To do so, we write the observation error

covariance matrix (i.e., for εt) as Rt = τ−1z D(S), where D(S) is an (S × S) identity matrix, and

write the process error covariance matrix (i.e., for εt) as

Qt =

 τ−1ε D(S) 0

0 τ−1γ

 .
We then use the following steps to update µt:
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1. Draw random vectors of the Gaussian disturbances, ε+ and ε+ (the ‘+’ denoting that these

are a simulated draw).

2. Initialize the state vector Θ+
1 using a Normal(X1β + η, τ−1ε ) distribution for the first S

elements, and a Normal(0, τ−1γ ) distribution for the (S + 1)th element, use the vectors of ε+

and ε+ together with the state and observation equations (i.e., eqns. A.9 & A.10) to define

simulated state and observation vectors Θ+ and Z+.

3. Compute Z∗t = Zt − Z+
t , which we run through the Kalman filter using the following

forward equations:

Pt = MtPt−1L
′
t−1 + Q

Lt = Mt+1 −GtHt

Gt = Mt+1PtH
′
tF
−1

Ft = HtPtH
′
t + Rt

νt = Z∗t −HtAt

At = MtAt−1 + Gt−1νt−1.

Here, At = 0 indicates that A is initialized at t = 1 to be an all zero vector of length S + 1.

4. Compute vectors of smoothed disturbances at time t, Dt by setting DT = 0, and moving

backward by backward recursion:

Dt−1 = H′tF
−1
t νt + L′tDt.

5. Next, we generate smoothed mean residuals for the state vector, Θ̂
∗
t using eqn 8. of Durbin

& Koopman (2002) as

Θ̂
∗
1 = A1 + P1(H

′
1F
−1
1 ν1 + L′1D1), and

Θ̂
∗
t = MtΘ̂

∗
t−1 + QDt−1 for t > 1.
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6. A sample from the absolute state distribution at each time step is then calculated as

Θ̃t = Θ̂
∗
t + Θ+

t .

3. Updating βi

The full conditional distribution for each regression parameter, βi, is given by

[βi|·] ≡ Normal(βi; 0, 100)×MVN(µ1; X1β + η,Q1)×
T∏
t=2

MVN(µt; Mtµt−1,Qt),

where dependence upon β occurs both in the initial state distribution and in dictating the

elements of M through the resource selection formulation. As there is no closed form solution, we

obtain samples using MH updates.

4. Updating τε

The full conditional distribution for the precision of exchangable errors is available in closed form

as

[τε|·] ≡ Gamma(0.5n+ 1.0, 0.5∆′∆ + 0.01),

and can be simulated from directly. Here, ∆ is a vector of length ST , where the first S elements

are residuals associated with the initial state distribution (i.e., µ1 −X1β − η), and subsequent

elements are residuals associated with the resource selection process (i.e., µt −Mtµt−1∀t ≥ 2).

5. Updating α, τη

Reduced dimension spatial random effects for the initial state distribution (α) and their

accompanying precision (τη) are updated using the same procedure as for the AST model. In this

case, we use all survey units at time t = 1 to form relevant model matrices.

6. Updating σ

The full conditional distribution for σ (the autocorrelation parameter for AR1 temporal random

effects) is available in closed form and can be used to simulate values of σ directly:

[σ|·] ≡ MVN((γ ′−γ−)−1γ ′−γ+, τ
−1
γ (γ ′−γ−)−1),
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where

γ− = {γ2, γ3, . . . , γt−1}′, and

γ+ = {γ3, γ4, . . . , γT }′.

Note that the initial state distribution has γ1 = 0, so there are only T − 1 effective γ parameters

with which to base σ updates. We enforce the constraint that 0 ≤ σ ≤ 1 by rejecting any updates

of σ that occur outside of this range.

7. Updating τγ The full conditional distribution for the precision of temporal random effects is

available in closed form as

[τγ |·] ≡ Gamma(0.5(T − 1) + 1.0, 0.5∆′γ∆γ + 0.01),

and can be simulated from directly. Here, ∆γ is a vector of length T − 1, where the first element

is γ2, and susequent elements are γt − σγt−1.

8. Updating τd

The parameter τd controls the redistribution kernel, and thus the elements of Mt. We update τd

via a MH step, where the full conditional distribution is given by

[τd|·] ≡ Gamma(τd; 1.0, 0.01)×
T∏
t=2

MVN(µt,MtΘt,Qt).

4 Closed population ideal free (CPIF) model

For the closed population ideal free model, we base inference on the joint posterior

[N,Ns,t,ω,θ|C,o,p] ∝ [C|Ns,t,o,ω][ω|θ,o][Ns,t|N,ω][N ][θ]. (A.11)
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As stated in the main article, we now model the counts C as arising from a binomial (as opposed

to a Poisson) sampling process, where

Cs,t ∼ Binomial(Ns,t; ps,t),

where the fraction of sampling unit s surveyed at time t (ps,t)is known with certainty. Abundance

in sampling unit s at time t, Ns,t is modeled using a multinomial distribution, where

Ns,t ∼ Multinomial(N ;π).

Multinomial cell probabilities are modeled with a multinomial logit link: namely,

πi,t =
exp(ωi,t)∑
s exp(ωs, t)

.

We express habitat preference values (ωs,t) using a log-linear formulation that includes

spatio-temporal autocorrelation

ωt = o + Xtβ + κt + εt.

We use the same prior distributions for parameters as in previous sections, and use the same

formulation for κ as for the STPC model. For absolute abundance, we use the scale prior

[N ] ∝ N−1

as suggested by Link (2013).

4.1 Bayesian analysis of the CPIF model

Our strategy for simulating from eqn. A.11 is to condition on cells where data are observed to

estimate the latent parameters ω and regression parameters, and then to simulate values of Ns,t

and N using posterior prediction. To do this, we employ the following collapsed Gibbs sampler:

1. Updating ω
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We employ a different strategy for updating ωs,t depending upon whether sample unit s was

surveyed at time t or not. For each time t, we block update all surveyed units ωt with a

Langevin-Hastings step (see e.g., Givens & Hoeting 2005, section 7.1.4). Letting St denote the set

of surveyed sample units at time t (note also that ωt has dimension [St × 1)), the full conditional

for time t is given as

[ωt|·] ∝ Normal(ωt; ot + Xtβ + κt, τ
−0.5
ε Dt)×

∏
s∈S

ξ
Cs,t

s,t .

Here, Dt is an (St × St) identity matrix. We use ξ in place of π since we are conditioning on

surveyed cells only, but the calculation is similar:

ξs,t =
exp(ωs,t)∑
s∈S exp(ωs,t)

.

For each (s, t) ∈ U (U denoting the set of times and locations when surveying does not

occur), we simply simulate

ωs,t ∼ Normal(os,t + Xs,tβ + κs,t, τ
−1
ε ).

2-4. Updating β, τε, α, and τα

Updates of these parameters are conducted in the same manner as for the STPC model, simply

replacing µs,t with ωs,t. Recall that α are temporally evolving weights associated with each of m

knot locations. Spatio-temporal effects are modeled in the same manner as for the STPC model.

5. Updating total abundance

The total count of animals for surveys that occurred at time t, Ct =
∑

s∈S Cs,t, is distributed as

Ct ∼ Binomial(N, υt),

where

υt =
∑
s∈S

πs,tps,t,
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and where the full set of multinomial cell probabilities πs,t is

πs,t =
exp(ωs,t)∑
s exp(ωs,t)

.

Using this approach, the full conditional distribution for N is given (up to a proportionality

constant) as

[N |·] ∝ N−1
(N !)T∏

t(N − Ct)!
∏
t

(1− υt)N−Ct . (A.12)

We used the MH algorithm to sample from eqn. A.12. Posterior predictions of abundance across

the landscape could then be generated using

Nt ∼ Multinomial(N,πt).
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