Ecological Archives M085-007-A1

Sophie Zechmeister-Boltenstern, Katharina Maria Keiblinger, Maria Mooshammer, Josep Peñuelas, Andreas Richter, Jordi Sardans, and Wolfgang Wanek. 2015. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs 85:133–155. http://dx.doi.org/10.1890/14-0777.1

Appendix A. Stoichiometry across microbes and major biomes.

Table A1. Stoichiometry of molar ratios in microbes from different domains.

 

C:N

C:P

N:P

C:N:P

References

Archea

 

 

 

 

 

Sulfulobus

3.2–4.9

10.3–34.5

2.9–8.3

18.5:4.6:1

(Richter, unpublished data)

 

 

 

 

 

 

Bacteria

16.7

5

7.5

16.7:5:1

(Alberts, 1983)

 

~4

 

 

 

(Six et al. 2006)

Bacterial average

10

50

10

50:10:1

(Fagerbakke et al. 1996)

Bacteria culture, aquatic

3–6

 

 

 

(Strickland and Rousk 2010)

marine Bacteria

4.53

77

17

77:17:1

(Zimmerman et al. 2014)

Natural assemblages of marine bacteria

1.5–10

 

 

 

(Goldman et al. 1987)

Cultures from coastal waters

 

8–500

 

 

(Tezuka 1990)

Bacteria from marine environments

2.4–14.2

 

 

 

(Fagerbakke et al. 1996)

bacterial cultures, leaf litter

4.06–4.81

64.6–79.7

14.6–18.5

71.8:16.4:1

(Mouginot et al. 2014b)

Actinobacteria

2.38–10.9

52.1–175

10.1–37.9

88.1:19.2:1

(Mouginot et al. 2014b)

Bacteroidetes

2.9–5.55

53–154

9.5–36.7

89.4:21.4:1

(Mouginot et al. 2014b)

Proteobacteria

3.32–5.4

40.1–91.6

8.04–24.7

58.4:14.8:1

(Mouginot et al. 2014b)

Pseudomonas fluorescens

8–25

52–163

8–25

52:8:1-163:25:1

(Chrzanowski and Kyle 1996)

E. coli

13–16.5

52.4–65.1

13–16.5

52.4:13:1-65.1:16.5:1

(Makino et al. 2003)

Verrucomicrobiom spinosum culture

3.1–7.3

1.0–69.2

0.2–11.2

20.9:4.2:1

Richter, unpublished data

Pectobacterium carotovora culture

3.4

20.3–25.2

5.9–7.5

13.6:3.2:1

Richter, unpublished data

 

 

 

 

 

 

Fungi

5–15

 

 

 

(Strickland and Rousk 2010)

 

~10

 

 

 

(Six et al. 2006)

Fungal Redfield ratio

10

90

9

90:9:1

(Leach 2010)

Fungal culture, aquatic

7–16

40–203

5–20

40:7:1–203:16:1

(Leach 2010)

Fungal cultures, leaf litter

7.25–9.51

90.9–125

11.2–15.8

106:13.3:1

(Mouginot et al. 2014b)

Myccorhizal fungi

3–51

 

 

 

(Strickland and Rousk 2010)

Saprotrophic fungi

4–60

 

 

 

(Strickland and Rousk 2010)

Ectomycorrhizal fungi

17.3

195.9

11.3

195.9:17.3:1

(Wallander et al. 2002, 2003)

Arbuscular mycorrhiza

10

 

 

 

(Johnson 2010)

Ascomycota (cultured from leaf litter)

4.88–28.20

45.70–316

1.87–27.3

125:14.2:1

(Mouginot et al. 2014b)

Basidiomycota (cultured from leaf litter)

4.55–12.6

41.6–227

6.62–37.1

126:20.4:1

(Mouginot et al. 2014b)

Zygomycota(cultured from leaf litter)

6.99–8.92

75.9–128

9–18.4

94.2:12.3:1

(Mouginot et al. 2014b)

Trichoderma harzianum culture

5.1–17.5

9.6–173.0

1.7–14.8

42.6:4.2:1

(Richter, unpublished data)

Aspergillus nidulans culture

5.8–14.2

13.0–95.3

1.7–10.2

36:4.3:1

(Richter, unpublished data)

 

 

 

 

 

 

Communities

 

 

 

 

 

Phytoplankton in the ocean

16

106

16

106:16:1

(Redfield 1958)

Soil microbial communities

8.6

60

7

60:7:1

(Cleveland and Liptzin 2007)

leaf litter, microbial communities

4

16

4

16:4:1

(van Meeteren et al. 2008)

cultivated microbial communities from grassland leaf litter

5.52–6.80

79.4–97.7

13.3–16.4

88.1:14.7:1

(Mouginot et al. 2014b)

 

 

 

 

 

 

 

FigA1

Fig. A1. Changes in ecosystem C:N stoichiometry across major biomes. The following biomes were targeted: TRF, tropical rainforests; TEDF, temperate deciduous forests; TECF, temperate coniferous forests; BOCF, boreal coniferous forests; TUN, tundra; TRG, tropical/C4 grasslands; TEG, temperate/C3 grasslands. All ratios are molar (atomic) ratios, and mass-based ratios were transformed to atomic ratios by dividing by the respective atomic masses. Data were compiled from the following sources: leaves (McGroddy et al. 2004, Reich and Oleksyn 2004, Wang et al. 2010), leaf litter (McGroddy et al. 2004, Yuan and Chen 2009, Brovkin et al. 2012), live fine roots (Gordon and Jackson 2000, Yuan et al. 2011), dead fine roots (Yuan et al. 2011), wood (Harmon et al. 1986, Martinelli et al. 2000, Weedon et al. 2009, Manzoni et al. 2010, Thomas and Martin 2012), soil organic matter (Xu et al. 2013), and soil microbial biomass (Xu et al. 2013). Most leaf stoichiometric ratios were taken from (Wang et al. 2010), only those from TECF were obtained from (McGroddy et al. 2004). Leaf litter ratios were mainly compiled from (Yuan and Chen 2009), only for TRG and TECF were they taken from (McGroddy et al. 2004, Brovkin et al. 2012). Life root stoichiometry was taken from root N, P and N:P ratios from Fig. 2 and the mean C content (44.7%) in Yuan et al. (2011). Life root stoichiometry of TEDF, TECF and BOCF were averaged from data by (Gordon and Jackson 2000). Dead root N:P was estimated from mean latitudes of major biomes and the power function in Fig. 1 (N:P = 66.6 x latitude-0.42) of Yuan et al. (2011). No data were provided for C:N and C:P. Wood stoichiometry was taken as an average from data on TRF (Martinelli et al. 2000), TECF and TEDF (Harmon et al. 1986, Martinelli et al. 2000), and BOCF (Manzoni et al. 2010).


 

FigA2

Fig. A2. Changes in ecosystem C:P stoichiometry across major biomes. Data sources are as presented in Fig. A1 caption.


 

FigA3

Fig. A3. Relation between soil organic C content (SOC) and soil C:N:P stoichiometry, and between soil and microbial community C:N:P. Data were taken from the Supplementary data table provided by Xu et al. (2013) and means and standard errors calculated after arbitrarily binning the data set into three classes of soil, i.e., with high SOC (organic soils; >100 mg C g-1 soil dw.), medium SOC (mineral topsoils; 20-100 mg C g-1 soil dw.) and low SOC (mineral subsoils; <20 mg C g-1 soil dw.).


 

Literature cited

AbdElgawad, H., D. Peshev, G. Zinta, W. Van den Ende, I. A. Janssens, and H. Asard. 2014. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators. Plos One 9.

Aber, J. D., and J. M. Melillo. 1980. Litter Decomposition - Measuring Relative Contributions of Organic-Matter and Nitrogen to Forest Soils. Canadian Journal of Botany-Revue Canadienne De Botanique 58:416-421.

Aerts, R. 1996. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology 84:597-608.

Aerts, R. 1997a. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79:439-449.

Aerts, R. 1997b. Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposibility? Oikos 80:603-606.

Aerts, R., T. V. Callaghan, E. Dorrepaal, R. S. P. van Logtestijn, and J. H. C. Cornelissen. 2009. Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Functional Ecology 23:680-688.

Aerts, R., and F. S. Chapin. 2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Pages 1-67 in A. H. Fitter and D. G. Raffaelli, editors. Advances in Ecological Research, Vol 30.

Aerts, R., P. M. van Bodegom, and J. H. C. Cornelissen. 2012. Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytologist 196:181-188.

Ågren, G. I., E. Bosatta, and A. H. Magill. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94-98.

Allen, A. P., and J. F. Gillooly. 2009. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters 12:369-384.

Allison, S. D. 2005. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecology Letters 8:626-635.

Allison, S. D. 2012. A trait-based approach for modelling microbial litter decomposition. Ecology Letters 15:1058-1070.

Allison, S. D., and P. M. Vitousek. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry 37:937-944.

Allison, V. J., L. M. Condron, D. A. Peltzer, S. J. Richardson, and B. L. Turner. 2007. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology & Biochemistry 39:1770-1781.

Anderson, T. R., and D. O. Hessen. 1995. Carbon or nitrogen limitation in marine copepods? Journal of Plankton Research 17:317-331.

Aneja, M. K., S. Sharma, F. Fleischmann, S. Stich, W. Heller, G. Bahnweg, J. C. Munch, and M. Schloter. 2006. Microbial colonization of beech and spruce litter - Influence of decomposition site and plant litter species on the diversity of microbial community. Microbial Ecology 52:127-135.

Arbuckle, K. E., and J. A. Downing. 2001. The influence of watershed land use on lake N : P in a predominantly agricultural landscape. Limnology and Oceanography 46:970-975.

Austin, A. T., and P. M. Vitousek. 2012. Introduction to a Virtual Special Issue on ecological stoichiometry and global change. New Phytologist 196:649-651.

Averill, C. 2014. Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes. Ecology Letters:n/a-n/a.

Beier, C., B. A. Emmett, J. Penuelas, I. K. Schmidt, A. Tietema, M. Estiarte, P. Gundersen, L. Llorens, T. Riis-Nielsen, A. Sowerby, and A. Gorissen. 2008. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Science of the Total Environment 407:692-697.

Bengtson, P., J. Barker, and S. J. Grayston. 2012. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecology and Evolution 2:1843-1852.

Berg, B., and C. McClaugherty. 2003. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin.

Billings, S. A., S. M. Schaeffer, and R. D. Evans. 2002. Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biology & Biochemistry 34:1777-1784.

Blagodatskaya, E., and Y. Kuzyakov. 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67:192-211.

Borer, E. T., M. E. S. Bracken, E. W. Seabloom, J. E. Smith, J. Cebrian, E. E. Cleland, J. J. Elser, W. F. Fagan, D. S. Gruner, W. S. Harpole, H. Hillebrand, A. J. Kerkhoff, and J. T. Ngai. 2013. Global biogeography of autotroph chemistry: is insolation a driving force? Oikos 122:1121-1130.

Bray, S. R., K. Kitajima, and M. C. Mack. 2012. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology & Biochemistry 49:30-37.

Bridgham, S. D., J. Pastor, C. A. Mcclaugherty, and C. J. Richardson. 1995. Nutrient-Use Efficiency - a Litterfall Index, a Model, and a Test Along a Nutrient-Availability Gradient in North-Carolina Peatlands. American Naturalist 145:1-21.

Bridgham, S. D., and C. J. Richardson. 2003. Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry 65:151-178.

Brovkin, V., P. M. van Bodegom, T. Kleinen, C. Wirth, W. K. Cornwell, J. H. C. Cornelissen, and J. Kattge. 2012. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9:565-576.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a metabolic theory of ecology. Ecology 85:1771-1789.

Butterbach-Bahl, K., E. M. Baggs, M. Dannenmann, R. Kiese, and S. Zechmeister-Boltenstern. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences.

Campioli, M., A. Michelsen, A. Demey, A. Vermeulen, R. Samson, and R. Lemeur. 2009. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species. Ecosystems 12:760-776.

Cardenas, I., and J. Campo. 2007. Foliar nitrogen and phosphorus resorption and decomposition in the nitrogen-fixing tree Lysiloma microphyllum in primary and secondary seasonally tropical dry forests in Mexico. Journal of Tropical Ecology 23:107-113.

Chapin, F. S., N. Fetcher, K. Kielland, K. R. Everett, and A. E. Linkins. 1988. Productivity and nutrient cycling in Alaskan tundra - enhancement by flowing soil water. Ecology 69:693-702.

Chrzanowski, T. H., and M. Kyle. 1996. Ratios of carbon, nitrogen and phosphorus in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquatic Microbial Ecology 10:115-122.

Chuyong, C. B., D. M. Newbery, and N. C. Songwe. 2000. Litter nutrients and retranslocation in a central African rain forest dominated by ectomycorrhizal trees. New Phytologist 148:493-510.

Cleveland, C. C., and D. Liptzin. 2007. C : N : P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? Biogeochemistry 85:235-252.

Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Perez-Harguindeguy, H. M. Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. van Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Diaz, E. Garnier, D. E. Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. V. Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065-1071.

Cote, B., J. W. Fyles, and H. Djalilvand. 2002. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science 59:275-281.

Dijkstra, F. A., E. Pendall, J. A. Morgan, D. M. Blumenthal, Y. Carrillo, D. R. LeCain, R. F. Follett, and D. G. Williams. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist 196:807-815.

Doi, H., M. Cherif, T. Iwabuchi, I. Katano, J. C. Stegen, and M. Striebel. 2010. Integrating elements and energy through the metabolic dependencies of gross growth efficiency and the threshold elemental ratio. Oikos 119:752-765.

Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood, and R. W. Sterner. 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6:936-943.

Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin, and J. E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10:1135-1142.

Elser, J. J., D. R. Dobberfuhl, N. A. MacKay, and J. H. Schampel. 1996. Organism size, life history, and N:P stoichiometry. Bioscience 46:674-684.

Elser, J. J., R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, S. E. Hobbie, G. M. Odell, and L. J. Weider. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3:540-550.

Elser, J. J., and J. Urabe. 1999. The stoichiometry of consumer-driven nutrient recycling: Theory, observations, and consequences. Ecology 80:735-751.

Enríquez, S., C. M. Duarte, and K. Sandjensen. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457-471.

Fagerbakke, K. M., M. Heldal, and S. Norland. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology 10:15-27.

Fierer, N., M. A. Bradford, and R. B. Jackson. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354-1364.

Fierer, N., J. P. Schimel, and P. A. Holden. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology & Biochemistry 35:167-176.

Finer, L., M. Ohashi, K. Noguchi, and Y. Hirano. 2011a. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management 261:265-277.

Finer, L., M. Ohashi, K. Noguchi, and Y. Hirano. 2011b. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management 262:2008-2023.

Freschet, G. T., R. Aerts, and J. H. C. Cornelissen. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26:56-65.

Freschet, G. T., J. H. C. Cornelissen, R. S. P. van Logtestijn, and R. Aerts. 2010. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytologist 186:879-889.

Freschet, G. T., W. K. Cornwell, D. A. Wardle, T. G. Elumeeva, W. D. Liu, B. G. Jackson, V. G. Onipchenko, N. A. Soudzilovskaia, J. P. Tao, and J. H. C. Cornelissen. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology 101:943-952.

Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos, and T. Yoshida. 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9:774-779.

Garten, C. T., Jr., A. T. Classen, and R. J. Norby. 2009. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant and Soil 319:85-94.

Gilliam, J. W. 1995. Phosphorus control strategies. Ecological Engineering 5:405-414.

Goldman, J. C., D. A. Caron, and M. R. Dennett. 1987. Regulation of Gross Growth Efficiency and Ammonium Regeneration in Bacteria by Substrate C-N Ratio. Limnology and Oceanography 32:1239-1252.

Gordon, W. S., and R. B. Jackson. 2000. Nutrient concentrations in fine roots. Ecology 81:275-280.

Güsewell, S., and C. Freeman. 2005. Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N : P ratios. Functional Ecology 19:582-593.

Güsewell, S., and M. O. Gessner. 2009. N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology 23:211-219.

Han, W. X., L. Y. Tang, Y. H. Chen, and J. Y. Fang. 2013. Relationship between the Relative Limitation and Resorption Efficiency of Nitrogen vs Phosphorus in Woody Plants. Plos One 8.

Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack, and K. W. Cummins. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15:133-302.

Hartman, W. H., and C. J. Richardson. 2013. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO(2)): Is There a Biological Stoichiometry of Soil Microbes? Plos One 8.

Hättenschwiler, S., B. Aeschlimann, M.-M. Couteaux, J. Roy, and D. Bonal. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist 179:165-175.

Hattenschwiler, S., N. Fromin, and S. Barantal. 2011. Functional diversity of terrestrial microbial decomposers and their substrates. Comptes Rendus Biologies 334:393-402.

Hattenschwiler, S., and H. B. Jorgensen. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98:754-763.

Hedin, L. O., P. M. Vitousek, and P. A. Matson. 2003. Nutrient losses over four million years of tropical forest development. Ecology 84:2231-2255.

Hietz, P., B. L. Turner, W. Wanek, A. Richter, C. A. Nock, and S. J. Wright. 2011. Long-Term Change in the Nitrogen Cycle of Tropical Forests. Science 334:664-666.

Högberg, M. N., M. J. I. Briones, S. G. Keel, D. B. Metcalfe, C. Campbell, A. J. Midwood, B. Thornton, V. Hurry, S. Linder, T. Näsholm, and P. Högberg. 2010. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist 187:485-493.

Högberg, P. 2010. Is tree root respiration more sensitive than heterotrophic respiration to changes in soil temperature? The New phytologist 188:9-10; author reply 10-11.

Holloway, J. M., and R. A. Dahlgren. 2002. Nitrogen in rock: Occurrences and biogeochemical implications. Global Biogeochemical Cycles 16.

Homann, P. S. 2012. Convergence and divergence of nutrient stoichiometry during forest litter decomposition. Plant and Soil 358:240-263.

Hossain, M. Z., A. Okubo, and S. Sugiyama. 2010. Effects of grassland species on decomposition of litter and soil microbial communities. Ecological Research 25:255-261.

Hui, D. F., and R. B. Jackson. 2006. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytologist 169:85-93.

IPCC. 2007. Contribution of Working Group I to the fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Publisher, Cambridge, UK and New York, NY, USA.

Jacobson, T. K., M. M. Bustamante, and A. R. Kozovits. 2011. Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions. Environmental Pollution 159:2236-2242.

Johnson, N. C. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185:631-647.

Kaiser, C., O. Franklin, U. Dieckmann, and A. Richter. 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters 17:680-690.

Kang, H., Z. Xin, B. Berg, P. J. Burgess, Q. Liu, Z. Liu, Z. Li, and C. Liu. 2010. Global pattern of leaf litter nitrogen and phosphorus in woody plants. Annals of Forest Science 67.

Karpinets, T. V., D. J. Greenwood, C. E. Sams, and J. T. Ammons. 2006. RNA: protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. Bmc Biology 4.

Kattge, J., S. Diaz, S. Lavorel, C. Prentice, P. Leadley, G. Bonisch, E. Garnier, M. Westoby, P. B. Reich, I. J. Wright, J. H. C. Cornelissen, C. Violle, S. P. Harrison, P. M. van Bodegom, M. Reichstein, B. J. Enquist, N. A. Soudzilovskaia, D. D. Ackerly, M. Anand, O. Atkin, M. Bahn, T. R. Baker, D. Baldocchi, R. Bekker, C. C. Blanco, B. Blonder, W. J. Bond, R. Bradstock, D. E. Bunker, F. Casanoves, J. Cavender-Bares, J. Q. Chambers, F. S. Chapin, J. Chave, D. Coomes, W. K. Cornwell, J. M. Craine, B. H. Dobrin, L. Duarte, W. Durka, J. Elser, G. Esser, M. Estiarte, W. F. Fagan, J. Fang, F. Fernandez-Mendez, A. Fidelis, B. Finegan, O. Flores, H. Ford, D. Frank, G. T. Freschet, N. M. Fyllas, R. V. Gallagher, W. A. Green, A. G. Gutierrez, T. Hickler, S. I. Higgins, J. G. Hodgson, A. Jalili, S. Jansen, C. A. Joly, A. J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J. M. H. Knops, K. Kramer, I. Kuhn, H. Kurokawa, D. Laughlin, T. D. Lee, M. Leishman, F. Lens, T. Lenz, S. L. Lewis, J. Lloyd, J. Llusia, F. Louault, S. Ma, M. D. Mahecha, P. Manning, T. Massad, B. E. Medlyn, J. Messier, A. T. Moles, S. C. Muller, K. Nadrowski, S. Naeem, U. Niinemets, S. Nollert, A. Nuske, R. Ogaya, J. Oleksyn, V. G. Onipchenko, Y. Onoda, J. Ordonez, G. Overbeck, W. A. Ozinga, S. Patino, S. Paula, J. G. Pausas, J. Penuelas, O. L. Phillips, V. Pillar, H. Poorter, L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Rammig, S. Reinsch, B. Reu, L. Sack, B. Salgado-Negre, J. Sardans, S. Shiodera, B. Shipley, A. Siefert, E. Sosinski, J. F. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M. Waldram, E. Weiher, M. White, S. White, S. J. Wright, B. Yguel, S. Zaehle, A. E. Zanne, and C. Wirth. 2011. TRY - a global database of plant traits. Global Change Biology 17:2905-2935.

Keiblinger, K. M., T. Schneider, B. Roschitzki, E. Schmid, L. Eberl, I. Haemmerle, S. Leitner, A. Richter, W. Wanek, K. Riedel, and S. Zechmeister-Boltenstern. 2012. Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression. Biogeosciences 9:4537-4551.

Kerkhoff, A. J., and B. J. Enquist. 2006. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters 9:419-427.

Kerkhoff, A. J., B. J. Enquist, J. J. Elser, and W. F. Fagan. 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography 14:585-598.

Kitayama, K., S. I. Aiba, M. Takyu, N. Majalap, and R. Wagai. 2004. Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems 7:259-274.

Kobe, R. K., C. A. Lepczyk, and M. Iyer. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780-2792.

Kozovits, A. R., M. M. C. Bustamante, C. R. Garofalo, S. Bucci, A. C. Franco, G. Goldstein, and F. C. Meinzer. 2007. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology 21:1034-1043.

Lamarque, J. F., T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D. Shindell, S. J. Smith, E. Stehfest, J. Van Aardenne, O. R. Cooper, M. Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi, and D. P. van Vuuren. 2010. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics 10:7017-7039.

Leach, D. 2010. Microbial Stoichiometry and Homeostasis of Nutrient Ratios in Fungi. Coastal Carolina University, Carolina.

Li, L. J., D. H. Zeng, R. Mao, and Z. Y. Yu. 2012. Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant Soil and Environment 58:446-451.

Li, P., Y. S. Yang, W. Han, and J. Fang. 2014. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography:DOI: 10.1111/geb.12190.

Lovelock, C. E., I. C. Feller, M. C. Ball, J. Ellis, and B. Sorrell. 2007. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecology Letters 10:1154-1163.

Lu, X.-T., G. T. Freschet, D. F. B. Flynn, and X.-G. Han. 2012. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology 100:144-150.

Makino, W., J. B. Cotner, R. W. Sterner, and J. J. Elser. 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry. Functional Ecology 17:121-130.

Manzoni, S., and A. Porporato. 2009. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology & Biochemistry 41:1355-1379.

Manzoni, S., P. Taylor, A. Richter, A. Porporato, and G. I. Ågren. 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196:79-91.

Manzoni, S., J. A. Trofymow, R. B. Jackson, and A. Porporato. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs 80:89-106.

Mao, W., Y. Li, J. Cui, X. Zuo, and X. Zhao. 2011. Variations in foliar nutrient resorption efficiency of different plant growth forms in a temperate sandy grassland. Polish Journal of Ecology 59:355-365.

Marklein, A. R., and B. Z. Houlton. 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist 193:696-704.

Martinelli, L. A., S. Almeida, I. F. Brown, M. Z. Moreira, R. L. Victoria, S. Filoso, C. A. C. Ferreira, and W. W. Thomas. 2000. Variation in nutrient distribution and potential nutrient losses by selective logging in a humid tropical forest of Rondonia, Brazil. Biotropica 32:597-613.

Martinez-Sanchez, J. L. 2005. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil. Revista De Biologia Tropical 53:353-359.

McFarland, A. M. S., and L. M. Hauck. 2004. Controlling phosphorus in runoff from long term dairy waste application fields. Journal of the American Water Resources Association 40:1293-1304.

McGill, W. B., and C. V. Cole. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267-286.

McGroddy, M. E., T. Daufresne, and L. O. Hedin. 2004. Scaling of C : N : P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 85:2390-2401.

Melillo, J. M., J. D. Aber, and J. F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626.

Miltner, A., P. Bombach, B. Schmidt-Brucken, and M. Kastner. 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41-55.

Moore, T. R., J. A. Trofymow, C. E. Prescott, J. Fyles, and B. D. Titus. 2006. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9:46-62.

Moorhead, D. L., G. Lashermes, and R. L. Sinsabaugh. 2012. A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biology & Biochemistry 53:133-141.

Moorhead, D. L., and R. L. Sinsabaugh. 2006. A theoretical model of litter decay and microbial interaction. Ecological Monographs 76:151-174.

Mooshammer, M., W. Wanek, I. Hämmerle, L. Fuchslueger, F. Hofhansl, A. Knoltsch, J. Schnecker, M. Takriti, M. Watzka, B. Wild, K. M. Keiblinger, S. Zechmeister-Boltenstern, and A. Richter. 2014a. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil N cycling. Nature Communications 5:3694.

Mooshammer, M., W. Wanek, S. Zechmeister-Boltenstern, and A. Richter. 2014b. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5:article 22.

Mosier, A. R., J. A. Morgan, J. Y. King, D. LeCain, and D. G. Milchunas. 2002. Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2. Plant and Soil 240:201-211.

Mouginot, C., R. Karwamura, K. L. Matulich, R. Berlemont, S. D. Allison, A. S. Amend, and A. C. Martiny. 2014a. Elemental stoichiometry of Fungi and Bacteria from grassland leaf litter. Soil Biology & Biochemistry 76:278-285.

Mouginot, C., R. Kawamura, K. L. Matulich, R. Berlemont, S. D. Allison, A. S. Amend, and A. C. Martiny. 2014b. Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology & Biochemistry 76:278-285.

Mulder, C., F. S. Ahrestani, M. Bahn, D. A. Bohan, M. Bonkowski, B. S. Griffiths, R. A. Guicharnaud, J. Kattge, P. H. Krogh, S. Lavorel, O. T. Lewis, G. Mancinelli, S. Naeem, J. Penuelas, H. Poorter, P. B. Reich, L. Rossi, G. M. Rusch, J. Sardans, and I. J. Wright. 2013a. Connecting the Green and Brown Worlds: Allometric and Stoichiometric Predictability of Above- and Below-Ground Networks. Ecological Networks in an Agricultural World 49:69-175.

Mulder, C., F. S. Ahrestani, M. Bahn, D. A. Bohan, M. Bonkowski, B. S. Griffiths, R. A. Guicharnaud, J. Kattge, P. H. Krogh, S. Lavorel, O. T. Lewis, G. Mancinelli, S. Naeem, J. Peñuelas, H. Poorter, P. B. Reich, L. Rossi, G. M. Rusch, J. Sardans, and I. J. Wright. 2013b. Connecting the green and brown worlds:  elemental factors and trait-driven predictability of ecological networks. Networks and interactions in agriculture.  submitted.

Nambiar, E. K. S. 1987. Do nutrients retranslocate from fine roots? Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 17:913-918.

Nasholm, T., A. Ekblad, A. Nordin, R. Giesler, M. Hogberg, and P. Hogberg. 1998. Boreal forest plants take up organic nitrogen. Nature 392:914-916.

Olander, L. P., and P. M. Vitousek. 2000. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175-190.

Ordonez, J. C., P. M. van Bodegom, J. P. M. Witte, I. J. Wright, P. B. Reich, and R. Aerts. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18:137-149.

Palace, M., M. Keller, and H. Silva. 2008. Necromass production: studies in undisturbed and logged Amazon forests. Ecological Applications 18:873-884.

Parton, W., W. L. Silver, I. C. Burke, L. Grassens, M. E. Harmon, W. S. Currie, J. Y. King, E. C. Adair, L. A. Brandt, S. C. Hart, and B. Fasth. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361-364.

Peñuelas, J., B. Poulter, J. Sardans, P. Ciais, M. van der Velde, and L. Bopp. 2013a. Human-induced nitrogen-phosphorus imbalances alter ecosystems across the globe. Nature Geoscience:submitted.

Penuelas, J., J. Sardans, J. M. Alcaniz, and J. M. Poch. 2009. Increased eutrophication and nutrient imbalances in the agricultural soil of NE Catalonia, Spain. Journal of Environmental Biology 30:841-846.

Peñuelas, J., J. Sardans, M. Estiarte, R. Ogaya, J. Carnicer, M. Coll, A. Barbeta, A. Rivas-Ubach, J. Llusià, M. Garbulsky, I. Filella, and A. S. Jump. 2013b. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology:DOI: 10.1111/gcb.12143.

Peñuelas, J., J. Sardans, A. Rivas-Ubach, and I. A. Janssens. 2012. The human-induced imbalance between C, N and P in Earth's life system. Global Change Biology 18:3-6.

Pietsch, K. A., K. Ogle, J. H. C. Cornelissen, W. K. Cornwell, G. Bönisch, J. M. Craine, B. G. Jackson, J. Kattge, D. A. Peltzer, J. Penuelas, P. B. Reich, D. A. Wardle, J. T. Weedon, I. J. Wright, A. E. Zanne, and C. Wirth. 2014. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography:DOI: 10.1111/geb.12172.

Potter, C. S., and S. A. Klooster. 1997. Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to changes in vegetation quality and biomass allocation. Tellus Series B-Chemical and Physical Meteorology 49:1-17.

Powers, J. S., R. A. Montgomery, E. C. Adair, F. Q. Brearley, S. J. DeWalt, C. T. Castanho, J. Chave, E. Deinert, J. U. Ganzhorn, M. E. Gilbert, J. Antonio Gonzalez-Iturbe, S. Bunyavejchewin, H. R. Grau, K. E. Harms, A. Hiremath, S. Iriarte-Vivar, E. Manzane, A. A. de Oliveira, L. Poorter, J.-B. Ramanamanjato, C. Salk, A. Varela, G. D. Weiblen, and M. T. Lerdau. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97:801-811.

Prosser, J. I., B. J. M. Bohannan, T. P. Curtis, R. J. Ellis, M. K. Firestone, R. P. Freckleton, J. L. Green, L. E. Green, K. Killham, J. J. Lennon, A. M. Osborn, M. Solan, C. J. van der Gast, and J. P. W. Young. 2007. Essay - The role of ecological theory in microbial ecology. Nature Reviews Microbiology 5:384-392.

Read, D. J., editor. 1991. Mycorrhizas in ecosystems - nature's response to the "law of the minimum". CAB International, Kew Surrey, UK.

Redfield, A. C. 1958. The Biological Control of Chemical Factors in the Environment. American Scientist 46:205-221.

Reed, S. C., A. R. Townsend, E. A. Davidson, and C. C. Cleveland. 2012. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist 196:173-180.

Regan, K., C. Kammann, K. Hartung, K. Lenhart, C. Mueller, L. Philippot, E. Kandeler, and S. Marhan. 2011. Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Global Change Biology 17:3176-3186.

Reich, P. B., S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West, D. Tilman, J. M. H. Knops, S. Naeem, and J. Trost. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922-925.

Reich, P. B., and J. Oleksyn. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101:11001-11006.

Richardson, S. J., R. B. Allen, and J. E. Doherty. 2008. Shifts in leaf N : P ratio during resorption reflect soil P in temperate rainforest. Functional Ecology 22:738-745.

Richardson, S. J., D. A. Peltzer, R. B. Allen, and M. S. McGlone. 2005. Resorption proficiency along a chronosequence: Responses among communities and within species. Ecology 86:20-25.

Rivas-Ubach, A., J. Sardans, M. Perez-Trujillo, M. Estiarte, and J. Penuelas. 2012. Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America 109:4181-4186.

Russell, J. B., and G. M. Cook. 1995. Energetics of Bacterial-Growth - Balance of Anabolic and Catabolic Reactions. Microbiological Reviews 59:48-62.

Saggar, S., R. L. Parfitt, G. Salt, and M. F. Skinner. 1998. Carbon and phosphorus transformations during decomposition of pine forest floor with different phosphorus status. Biology and Fertility of Soils 27:197-204.

Sardans, J., and J. Peñuelas. 2012. The Role of Plants in the Effects of Global Change on Nutrient Availability and Stoichiometry in the Plant-Soil System. Plant Physiology 160:1741-1761.

Sardans, J., and J. Peñuelas. 2013. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Global Ecology and Biogeography 22:494-507.

Sardans, J., A. Rivas-Ubach, and J. Penuelas. 2012a. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology Evolution and Systematics 14:33-47.

Sardans, J., A. Rivas-Ubach, and J. Peñuelas. 2012b. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1-39.

Sasaki, T., Y. Yoshihara, U. Jamsran, and T. Ohkuro. 2010. Ecological stoichiometry explains larger-scale facilitation processes by shrubs on species coexistence among understory plants. Ecological Engineering 36:1070-1075.

Saura-Mas, S., M. Estiarte, J. Penuelas, and F. Lloret. 2012. Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environmental and Experimental Botany 77:274-282.

Schimel, J. P., and M. N. Weintraub. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology & Biochemistry 35:549-563.

Schindlbacher, A., A. Rodler, M. Kuffner, B. Kitzler, A. Sessitsch, and S. Zechmeister-Boltenstern. 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology & Biochemistry 43:1417-1425.

Schindlbacher, A., S. Wunderlich, W. Borken, B. Kitzler, S. Zechmeister-Boltenstern, and R. Jandl. 2012. Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Global Change Biology 18:2270-2279.

Schneider, T., K. M. Keiblinger, E. Schmid, K. Sterflinger-Gleixner, G. Ellersdorfer, B. Roschitzki, A. Richter, L. Eberl, S. Zechmeister-Boltenstern, and K. Riedel. 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. Isme Journal 6:1749-1762.

Schreeg, L. A., M. C. Mack, and B. L. Turner. 2013. Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology 94:94-105.

Silla, F., and A. Escudero. 2006. Coupling N cycling and N productivity in relation to seasonal stress in Quercus pyrenaica Willd. saplings. Plant and Soil 282:301-311.

Silver, W. L., and R. K. Miya. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407-419.

Simpson, A. J., M. J. Simpson, E. Smith, and B. P. Kelleher. 2007. Microbially derived inputs to soil organic matter: Are current estimates too low? Environmental Science & Technology 41:8070-8076.

Sinsabaugh, R. L., and J. J. Follstad Shah. 2011. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102:31-43.

Sinsabaugh, R. L., and J. J. Follstad Shah. 2012. Ecoenzymatic Stoichiometry and Ecological Theory. Annual Review of Ecology, Evolution, and Systematics, Vol 43 43:313-343.

Sinsabaugh, R. L., B. H. Hill, and J. J. F. Shah. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795-U117.

Sinsabaugh, R. L., C. L. Lauber, M. N. Weintraub, B. Ahmed, S. D. Allison, C. Crenshaw, A. R. Contosta, D. Cusack, S. Frey, M. E. Gallo, T. B. Gartner, S. E. Hobbie, K. Holland, B. L. Keeler, J. S. Powers, M. Stursova, C. Takacs-Vesbach, M. P. Waldrop, M. D. Wallenstein, D. R. Zak, and L. H. Zeglin. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11:1252-1264.

Sinsabaugh, R. L., S. Manzoni, D. L. Moorhead, and A. Richter. 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters 16:930-939.

Sinsabaugh, R. L., and D. L. Moorhead. 1994. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry 26:1305-1311.

Sistla, S. A., E. B. Rastetter, and J. P. Schimel. 2014. Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecological Monographs 84:151-170.

Sistla, S. A., and J. P. Schimel. 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist 196:68-78.

Six, J., S. D. Frey, R. K. Thiet, and K. M. Batten. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70:555-569.

Sloan, V. L., B. J. Fletcher, M. C. Press, M. Williams, and G. K. Phoenix. 2013. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems. Global Change Biology 19:3668-3676.

Smith, A. C., J. S. Bhatti, H. Chen, M. E. Harmon, and P. A. Arp. 2011. Modelling above- and below-ground mass loss and N dynamics in wooden dowels (LIDET) placed across North and Central America biomes at the decadal time scale. Ecological Modelling 222:2276-2290.

Smith, V. H. 2002. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 81:99-106.

Sterner, R. W. 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. American Naturalist 136:209-229.

Sterner, R. W., and J. J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princton University Press, Princeton, USA.

Strickland, M. S., E. Osburn, C. Lauber, N. Fierer, and M. A. Bradford. 2009. Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23:627-636.

Strickland, M. S., and J. Rousk. 2010. Considering fungal:bacterial dominance in soils - Methods, controls, and ecosystem implications. Soil Biology & Biochemistry 42:1385-1395.

Sullivan, P. F., S. J. T. Arens, R. A. Chimner, and J. M. Welker. 2008. Temperature and microtopography interact to control carbon cycling in a high arctic fen. Ecosystems 11:61-76.

Sullivan, P. F., M. Sommerkorn, H. M. Rueth, K. J. Nadelhoffer, G. R. Shaver, and J. M. Welker. 2007. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153:643-652.

Talbot, J. M., and K. K. Treseder. 2012. Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345-354.

Tempest, D. W., and O. M. Neijssel. 1992. Physiological and energetic aspects of bacterial metabolite overproduction. Fems Microbiology Letters 100:169-176.

Tezuka, Y. 1990. Bacterial Regeneration of Ammonium and Phosphate as Affected by the Carbon - Nitrogen - Phosphorus Ratio of Organic Substrates. Microbial Ecology 19:227-238.

Thomas, S. C., and A. R. Martin. 2012. Carbon Content of Tree Tissues: A Synthesis. Forests 3:332-352.

Thrall, P. H., M. E. Hochberg, J. J. Burdon, and J. D. Bever. 2007. Coevolution of symbiotic mutualists and parasites in a community context. Trends in Ecology & Evolution 22:120-126.

Tian, H. Q., G. S. Chen, C. Zhang, J. M. Melillo, and C. A. S. Hall. 2010. Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry 98:139-151.

Townsend, A. R., C. C. Cleveland, G. P. Asner, and M. M. C. Bustamante. 2007. Controls over foliar N : P ratios in tropical rain forests. Ecology 88:107-118.

Treseder, K. K., and P. M. Vitousek. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946-954.

Trofymow, J. A., T. R. Moore, B. Titus, C. Prescott, I. Morrison, M. Siltanen, S. Smith, J. Fyles, R. Wein, C. CamirT, L. Duschene, L. Kozak, M. Kranabetter, and S. Visser. 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 32:789-804.

Urabe, J., and Y. Watanabe. 1992. Possibility of N or P limitation for planktonic cladocerans: An experimental test. Limnology and Oceanography 37:244-251.

van Geffen, K. G., L. Poorter, U. Sass-Klaassen, R. S. P. van Logtestijn, and J. H. C. Cornelissen. 2010. The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology 91:3686-3697.

van Heerwaarden, L. M., S. Toet, and R. Aerts. 2003. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology 91:1060-1070.

van Meeteren, M. J. M., A. Tietema, E. E. van Loon, and J. M. Verstraten. 2008. Microbial dynamics and litter decomposition under a changed climate in a Dutch heathland. Applied Soil Ecology 38:119-127.

Veraart, A. J., J. J. M. de Klein, and M. Scheffer. 2011. Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics. Plos One 6.

Vergutz, L., S. Manzoni, A. Porporato, R. F. Novais, and R. B. Jackson. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82:205-220.

Vitousek, P. M. 1998. Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1:401-407.

Vitousek, P. M., and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87-115.

Vitousek, P. M., S. Porder, B. Z. Houlton, and O. A. Chadwick. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20:5-15.

Walker, T. W., and J. K. Syers. 1976. Fate of Phosphorus during Pedogenesis. Geoderma 15:1-19.

Wallander, H., L. Johansson, and J. Pallon. 2002. PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. Fems Microbiology Ecology 39:147-156.

Wallander, H., L. O. Nilsson, D. Hagerberg, and U. Rosengren. 2003. Direct estimates of C : N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biology & Biochemistry 35:997-999.

Wang, Y. P., R. M. Law, and B. Pak. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261-2282.

Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setala, W. H. van der Putten, and D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629-1633.

Weedon, J. T., W. K. Cornwell, J. H. C. Cornelissen, A. E. Zanne, C. Wirth, and D. A. Coomes. 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters 12:45-56.

Welker, J. M., J. T. Fahnestock, P. F. Sullivan, and R. A. Chimner. 2005. Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. Oikos 109:167-177.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.

Xu- Ri, I. C. Prentice, R. Spahni, and H. S. Niu. 2012. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. New Phytologist 196:472-488.

Xu, X. F., P. E. Thornton, and W. M. Post. 2013. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography 22:737-749.

Yang, X., P. E. Thornton, D. M. Ricciuto, and W. M. Post. 2014. The role of phosphorus dynamics in tropical forests - a modeling study using CLM-CNP. Biogeosciences 11:1667-1681.

Yang, Y., G. Wang, L. Yang, and J. Guo. 2013. Effects of Drought and Warming on Biomass, Nutrient Allocation, and Oxidative Stress in Abies fabri in Eastern Tibetan Plateau. Journal of Plant Growth Regulation 32:298-306.

Yu, Q., J. J. Elser, N. He, H. Wu, Q. Chen, G. Zhang, and X. Han. 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166:1-10.

Yuan, Z. Y., and H. Y. H. Chen. 2010. Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Critical Reviews in Plant Sciences 29:204-221.

Yuan, Z. Y., H. Y. H. Chen, and P. B. Reich. 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications 2.

Yuan, Z. Y. Y., and H. Y. H. Chen. 2009. Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography 18:532-542.

Zhang, D. Q., D. F. Hui, Y. Q. Luo, and G. Y. Zhou. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology-Uk 1:85-93.

Zhang, H., W. Yuan, W. Dong, and S. Liu. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity: DOI: 10.1016/j.ecocom.2014.1001.1003.

Zimmerman, A. E., S. D. Allison, and A. C. Martiny. 2014. Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria. Environmental Microbiology 16:1398-1410.

Zotz, G. 2004. The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. Journal of Tropical Ecology 20:693-696.


[Back to M085-007]