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APPENDIX B. Justification of modeling and variable selection approaches. 

 

Separation 

 In attempting to fit occupancy models for our focal species within a maximum likelihood 

framework, we found evidence of considerable separation in models containing some of our 

candidate covariates. Separation is an inconvenient phenomenon apparent in discrete-response 

regression models that are fit by maximum likelihood, and that more or less perfectly predict the 

response outcomes (Albert and Anderson 1984, Hosmer and Lemeshow 2000). In the context of 

the state process of occupancy models, separation occurs when the linear predictor can be 

divided along a threshold, such that values all correspond to observed presences on one side of 

the threshold, to absences on the other. The likelihood function rises toward a discontinuity, and 

the values of model coefficients and standard errors are inflated, sometimes dramatically. 

 The irony of this problem is that in applying species distribution models to habitat 

gradients, perfect prediction is exactly the objective. We desired, therefore, to retain covariates 

for consideration even when they induced separation or quasi-separation. This effectively 

precluded our ability to fit models via maximum likelihood, since we could neither estimate 

parameters and standard errors, nor use likelihood-based model selection criteria. For this reason, 

we instead fit all occupancy models in the study within a Bayesian framework (Royle and 

Dorazio 2008), with estimation achieved via Markov Chain Monte Carlo sampling implemented 

in JAGS (Just Another Gibbs Sampler 3.3; Plummer 2012a) and called from R (R Core Team 

2013) with the rjags package (Plummer 2012b). We used uninformative priors for all regression 
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coefficients in both ψ and p models. Convergence of parameters was checked with the Gelman-

Rubin convergence diagnostic (Gelman and Rubin 1992) in the coda package (Plummer 2006). 

 

Bayesian variable selection 

 Our initial set of predictors for each species included many redundant variables, a result 

of our stated modeling objectives. The oft-cited guidelines for information-theoretic model 

selection by Burnham and Anderson (2001, 2002) prescribe the use of a relatively small number 

of predictor variables, combined according to a priori hypotheses. However, we contend that 

many field surveys occupy a middle ground between "strong inference" and "data dredging", and 

that relegating such studies to the latter category is unrealistic and counterproductive. 

Nevertheless, authors who find themselves in this gray area may use intuition or expert opinion 

to reduce moderately large sets of variables -- all of which have some a priori support -- down to 

a manageable number (Steidl 2006, Sleep et al. 2007, Steidl 2007). Perhaps this lends such 

modeling exercises the appearance of adhering to Burnham and Anderson's (2001) guidelines. In 

our view, however, this step introduces considerable unacknowledged subjectivity, when a firm 

set of a priori hypotheses is legitimately lacking, since important variables or models may be 

jettisoned at the outset (Seoane et al. 2005).  Correlated variables do not contain identical 

information, and we prefer a method of variable selection that is informed by data.  

Given this preference for data-driven model selection, and our set of constraints and 

objectives, we chose to use a Bayesian variable selection technique (Kuo and Mallick 1998, 

Royle and Dorazio 2008:72). 
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