
Appendix B 

Data Assimilation Approach 

This approach is based on Bayes' theorem to construct posterior distribution. The a priori 

information is defined as B(x) to be used for an input parameter vector x. The a posteriori 

information p(x) of the vector x can be defined as: 

      p x r B x L x              

where r is an appropriate normalization constant, and B(x) can be combined with the information 

obtained from comparisons between model outputs and observed data. L(x) is the likelihood 

function, which can be used to test the fit between observed and modelled value, and be expressed 

as following by assuming model errors are independent and following Gaussian distribution: 
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where u and u' denote the measured and simulated NEP (in gCm-2d-1), respectively,  represents 

estimated standard deviation of each data point, which related to the given model parameters and, 

thus, represents a combination of measurement error and process representation error. 

The Metropolice-Hastings (MH) algorithm was used to obtain sequences of random samples from 

the distribution of model parameters. After initialization, the acceptance distribution is judged to 

pick up a new parameter sample from a candidate parameter set.  The acceptance probability can 

be defined as follows, 
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where ψ is a parameter set that includes four parameters in this study ψ=(Vmax, Jmax, m, R10). p is 

ranging between 1 and 0 at each iterative process. This is used to chose the candidate parameters 

(the vector x) until reaching the last k iteration.  

This study conducted MCMC for the model simulations in each month of 2006 at seven forest flux 

towers. Limited by the space, here we present an example of posterior distribution of the four 

constrained parameters for ENB situation in March 2006 (Fig. B1). Our experiment indicates that 

the simulations demonstrated stabilized convergences after 3500 loops in the iterations (e.g. see 

Fig. B2).  

Another experiment demonstrated similar convergences in optimizing both R10 and Q10 (Fig. B3), 

and did not affect the convergences of other parameters (Vmax, Jmax, and m) and the NEP 

simulates. The sensitivity of the five key parameters was tested at the beginning of this study. With 

value increase of each parameter, all NEP simulates increased as well. Nonetheless, comparing the 

increases of parameter values, modelled NEP had different rates of relative increases, such as 

42.6%, 8.6%, 15.0%, and 17.8% faster than increases of Vmax, m, R10, and Q10 respectively, and 

18.6% slower than the increase of Jmax. The comparison suggests that Vmax, Jmax and Q10 are 

more sensitive to simulate NEP than other parameters. 

 

 



 

FIG. B1. An example of posterior distribution of the four constrained parameters. These 

simulations were performed to optimize parameters for ENB situation in March of 2006. Each 

simulation uses 5000 samples to construct the distribution. 

  



 

FIG. B2. An example of the convergence estimate for the posterior parameters illustrated in Fig. 

B1. The convergence stabilized after 3500 loops in the iterations based on the convergence 

diagnostic index (Gi=Di(k-1)/Di(k)).  

  



 

FIG. B3. An example of seasonal variation of parameters R10 and Q10 for the different forest 

ecosystems under investigation (2006). In this experiment, the parameter R10 and Q10 were tested 

concurrently with Vmax, Jmax, and m. The forest types are defined as same as in the Fig. 2.  

 


