Appendix D: Simple mortality calculations (m) to validate simple
state-space models

To incorporate the mosaic of measurement intervals, random effects, and explanatory variables,
we will ultimately create a state-space model for tree mortality. To validate the state space
model, we also calculate a simple average annual mortality after Sheil et al. (1995). We
compare this calculation with a simple version of our state-space model which uses a slightly
different but equivalent model structure and a different inferential framework to estimate the
same overall mortality parameter. Any subtle differences are due to the different estimation
methods. Sheil et al. (1995) calculate an annual mortality rate in the following way: N; =
No(1 —m)*, where Nj is the current number of stems, Nj is the initial number of stems, m is
the mortality per year, and ¢ is the measurement interval. Solving for m: m = 1— (N;/ No)l/ g
This calculation is a kind of cohort analysis, assuming that no individuals have been added
to Ny which were not in Ny. In our data, however, with every new census new individuals are
included and therefore every unique measurement interval constitutes a different measurement
cohort. In order to obtain a single estimate of m for each species, we maximize a binomial
likelihood with Ny, Ny, and ¢ for each cohort (defined as all trees sharing an inventory interval,
aggregating over plots) as data and a single m for all intervals as the binomial probability
parameter. Tables D1 and 1 (in the main paper) summarize the results of our m calculations.
We obtain 95% confidence intervals using a profile likelihood; the details of the calculation,
including code, are given in this Appendix. Calculations of m assume a constant mortality
rate and have no easy way to include year-level variables (including time trends and climate
and stand development variables). Note that the mortality rates from maximum likelihood
m estimations agree with the Bayesian estimates for the simple state-space model (Table 1
in main paper). Therefore, any differences between the estimates of m and the survival rates
in the more complex models are likely due to the hierarchical structure (plot effects) and
covariates, not to the Bayesian vs. frequentist estimation methods (de Valpine 2009).

Simple visualization of m for each time interval for each species

Figures D1 and 1 (in the main paper) show m calculated for every interval in the inventory,
pooled across plots sharing the same interval. The darker the line, the larger number of
individuals used to calculate m.



Figure D1: m for each interval in the inventory. Plots sharing the same interval are combined.
Shown on the log scale for clarity. Grayscale indicates how many trees are used for the
calculation; darker indicates more individuals.
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Figure D2: m for each interval in the inventory. Plots sharing the same interval are combined.
Shown on the log scale for clarity. Grayscale indicates how many trees are used for the
calculation; darker indicates more individuals.

Maximum likelihood calculations and code for obtaining single m estimates by
species

We give the details and code for estimating a single m for a species using maximum likelihood.
For each interval, we have Ny, the initial number of stems, N7, the final number of stems, and ¢,
the number of years in that measurement interval. We want to estimate the annual probability
of death m based on these reductions in stems over these time periods. We write a likelihood
L(Ny, Ny, tm) = Bin(Ny, Ny, P;), with the number of successes, or survived trees, Ny, out of
the number of trials, or number of initial trees, Ny, given a survival probability determined by
the number of years a tree has successfully survived: Py = (1 —m)’. In the simple case, with
one interval, P, is just N; /No. This is the same as Sheil et al. (1995)’s equation, which was
derived based on discretized differential equations. We will maximize the likelihood of all the
intervals together:

ZZOQ(LUVO” letl|m)) = Zlog (an<le>N0mPSz))

: (D.1)
Psi - (1 - m)ti

This calculation will correctly weight plots with many or few trees, and those with no



deaths or complete mortality. Here is the R code for the likelihood function:

> mylogLik<-function(m, dat) {

+ Psurv<-(1-m) “dat$t
+ sum(dbinom(dat$Nfin, dat$Nini, Psurv, log=TRUE))
+ }

And here is the code to maximize the likelihood using optim and get the profile likelihood
for confidence intervals:

> get.profCI.m<-function(datf){

+ res<-optimize (mylogLik,c(0,1),datf,maximum=TRUE)
+ mgrid<-seq(0, .1, length.out=1000)

+ proflik<-numeric()

+ for(i in 1:length(mgrid))

+ proflik[i]<-mylogLik(mgrid[i],datf)

+ liklim<-res$objective-qchisq(p=.95,df=1)

+ ms<-mgrid[which(proflik>=1iklim)]

+ return(c (m=res$maximum,LCI=min(ms), UCI=max(ms)))
+
>

}

Table D1 summarizes the results for m for all species with any deaths in our inventory.



Table D1: m results for all species (in percent) with profile-likelihood-based 95% confidence
intervals.

Species Deaths Trees (m)

All 833 3319 1.79
(1.62, 1.95)

IC 356 1378 1.81
(1.56, 2.08)

WF 231 846 2.14
(1.78, 2.54)

DF 78 395 1.39
(1.01, 1.87)

PP 90 332 1.62
(1.19, 2.12)

TO 17 110 1.28
(0.61, 2.32)

BO 20 104 1.21
(0.61, 2.1)

SP 31 101 2.3
(1.34, 3.61)

YW 3 18 1.27
(0.15, 4.44)

CH 6 16 2.75

(0.69, 7)

AL 1 7 0.64

(0.01, 4.23)
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