
Appendix C: Additional model details

Model Formulation

Existing work on hierarchical models for tree mortality in second growth systems typically
adopts an annual compounding framework to account for uneven census intervals (Hurst et al.
2011, Peng et al. 2011, Thorpe and Daniels 2012, Luo and Chen 2013, but see Yang and
Huang 2013). This formulation makes incorporating yearly variables difficult. One solution
has been to use a single average value for the predictor for a given census interval, but tree
mortality responses may track yearly variation in variables and thus mortality trends may not
be detected if the representative variable cannot be modeled at the yearly level. Hierarchical
state-space models (Metcalf et al. 2009, Clark et al. 2012, Csilléry et al. 2013) address these
challenges by explicitly modeling the latent unmeasured survival status of the tree in each year;
then a yearly climate variable as well as yearly stand development variables can be directly
included.

A note on estimation: in order to ensure that the prior for mean survival b is flat on the
probability scale, it must be specified in the following way in BUGS:

> i.overall<-logit(li.overall)

> li.overall~dunif(0, 1)

Where i.overall is b, and li.overall is the inverse logit (“expit”) of b. See Buoro et al.
(2012) for more details on ensuring flat priors on the probability scale. We adopt their method
only for the intercept b and not for the βks because doing so resulted in very slow mixing and
did not appreciably change parameter estimates.

See Figure C1 for a graphical representation of the model.
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Figure C1: Diagram of the state-space model. Data are indicated in rectangles, with pa-
rameters and latent states to be estimated indicated in ellipses. Colored arrows indicate
multiplication of data (rectangle) by a parameter (typically β, labeled circles) to be summed
in the linear predictors for z. The black arrows indicate the process portion of the model
wherein the current survival status is conditional on the previous survival status: if a tree is
dead at time (t − 1), it remains dead at time t. This diagram is for tree i in plot j; imagine
another such diagram for every tree in the inventory. Each linear predictor coefficient β is
only labeled once, but every arrow of the same color also indicates that parameter. Note that
we have depicted zij(t − 1) and zij(t + 1) as known states – observations – and zij(t) as an
unknown latent state to be estimated. Dashed black lines indicate variables which have been
interpolated.

2



Prior sensitivity

The majority of model parameters were not sensitive to the priors chosen. We tested the
final models with three alternative sets of priors: 1) for intercept, b, we tried a normal prior
(precision = 1E-6) rather than uniform (0,1) for expit(b); 2) for plot standard deviation, we
tried a gamma(0.001, 0.001) on the precision scale (inverse gamma on the standard deviation
scale); and 3) for the beta parameters for covariates, we tried a normal distribution with
precision 1E-4, i.e. a standard deviation one order of magnitude smaller.

Beta parameters in particular showed little difference based on this smaller standard devi-
ation (larger precision; see Fig. C2). Requiring the prior to be weakly informative on b rather
than expit(b) causes slight shifts for most species (biased towards higher survival), but a large
shift for black oak and a moderate shift for tanoak (Fig. C3). We take this to mean that
most species are weakly sensitive to the choice of prior, but that for species with very high
survival and less data (i.e. black oak), the prior has a strong effect and ensuring that it is
uninformative on the probability scale, as we have done in the main paper, is very important.

The plot standard deviation posterior did show some sensitivity (Fig. C4). In particular, by
using an inverse gamma prior, we see that for two species with small plot standard deviations
(Douglas-fir and sugar pine), weighting values closer to zero more highly does reduce the
parameter estimates and slows mixing. On the other hand, for two species (white fir and
black oak), the inverse gamma prior prevents the MCMC from getting ‘stuck’ at zero because
it has zero weight at zero. This causes the posterior to align completely with the non-zero mode
demonstrated for these species in Appendix F. For all other species, changing the plot standard
deviation prior makes no appreciable difference in the resulting posterior. We interpret these
results to indicate that the prior chosen in the main text (which is flat on the standard deviation
scale) is a reasonable choice, in contrast to the effectively uninformative normal prior on the
precision scale which results in an inverse gamma prior on the standard deviation scale. We
additionally note that the standard deviations for white fir and black oak are likely to be
significant and the secondary node at zero seen in Appendix F is an artifact of the MCMC
sampler.
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Figure C2: Sensitivity of posteriors for linear size, βDBH , to different normal priors, one
with precision 1E-6 (black, final model), and one with precision 1E-4 (red). Solid lines are
posteriors; dotted lines are priors, multiplied by various factors of 10 to make their shape
visible against the posteriors. Vertical solid lines are posterior means, and (where visible),
cyan vertical lines indicate initial values for the MCMC chain.
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Figure C3: Sensitivity of posteriors for the survival of an average tree, expit(b), to different
priors, one uniform on expit(b) (black, final model), and one normal (precision 1E-6) on b
(red). Solid lines are posteriors; dotted lines are priors, multiplied by various factors of 10 to
make their shape visible against the posteriors. Vertical solid lines are posterior means, and
(where visible), cyan vertical lines indicate initial values for the MCMC chain.
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Figure C4: Sensitivity of posteriors for the plot random effect standard deviation, σp, to
different priors, one uniform on the standard deviation from zero to 100 (black, final model),
and one gamma (0.001, 0.001) on the precision (inverse-gamma on the standard deviation,
red). Solid lines are posteriors; dotted lines are priors, multiplied by various factors of 10 to
make their shape visible against the posteriors. Vertical solid lines are posterior means, and
(where visible), cyan vertical lines indicate initial values for the MCMC chain.
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Standardizing explanatory variables

We have standardized the original variables by centering (subtracting the mean of the explana-
tory variable µxk) and scaling (dividing by the standard deviation of the explanatory variable
σxk):

xk(t)
′
=

xk(t)−µ
xk

σ
xk

(C.1)

The model we have estimated is in terms of these standardized variables:

logit(φij(t)
′) = β0j

′ +
∑
k

βk
′
xkij(t)

′
(C.2)

Rewriting this in terms of the original variables:

logit(φij(t)
′) = β0j

′ +
∑
k

βk
′xk(t) − µxk

σxk
(C.3)

We want to keep the variables centered but return them to the scale of the original variables,
so we want to write this equation in terms of a centered variable:

xk(t)
′′

= xk(t) − µxk (C.4)

Rewriting the model equation with respect to the double-primed variables:

logit(φij(t)
′′) = β0j

′′ +
∑
k

βk
′′xk(t)

′′

σxk
(C.5)

We can see that the intercept β0j
′′ = β0j

′ = β0j (and b and pj along with it); but that the
coefficient for xk(t) must be divided by σxk :

βk
′′

= βk
′
/σxk (C.6)

The quadratic term for size, (βDBH
2
), would need to be divided by σ2

xDBH .
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