Appendix C: Solutions and stability of the facilitation model

Eqs. 25 and 26-28 are set to zero to solve for the equilibria. x_{ϕ}^{*} is the same as in the null model and is equal to $h /(r+h)$. We then solve for the equilibrium of the next highest state, x_{0}^{*}. The roots of the quadratic are

$$
\begin{equation*}
x_{0}=\frac{r}{r+h} \text { and } \frac{h}{c_{1}} . \tag{C.1}
\end{equation*}
$$

$x_{0}^{*}=h / c_{1}$ when $x_{1}>0$. Because when $x_{0}=r /(r+h), x_{\phi}+x_{0}=1$, only the second solution makes sense if there are patches in other states.

We repeat the same procedure to solve for x_{1}, using $x_{0}=h / c_{1}$; the roots are

$$
\begin{equation*}
x_{1}^{*}=\frac{r}{r+h}-\frac{h}{c_{1}} \text { and } \frac{h}{c_{2}} . \tag{C.2}
\end{equation*}
$$

Again, the first solution corresponds to a case in which species 2 (and above) are absent. Because of this structure, we can solve for an arbitrary i.

$$
\begin{gather*}
\frac{d x_{i}}{d t}=0=-c_{i+1} x_{i}\left(\sum_{j=i+1}^{S} x_{j}\right)+c_{i} x_{i-1}\left(\sum_{j=1}^{S} x_{j}\right)-h x_{i} \tag{C.3}\\
0=-c_{i+1} x_{i}\left(1-x_{\phi}-\sum_{j=0}^{i} x_{j}\right)+c_{i} x_{i-1}\left(1-x_{\phi}-\sum_{j=0}^{i-1} x_{j}\right)-h x_{i} \tag{C.4}\\
0=-c_{i+1} x_{i}\left[\frac{r}{r+h}-h\left(\sum_{j=1}^{S} \frac{1}{c_{j}}\right)-x_{i}\right]+c_{i} \frac{h}{c_{i}}\left[\frac{r}{r+h}-h\left(\sum_{j=1}^{S} \frac{1}{c_{j}}\right)\right]-h x_{i} \tag{C.5}
\end{gather*}
$$

x_{i}^{*} is either

$$
\begin{gather*}
x_{i}=\frac{r}{r+h}-h \sum_{j=1}^{S} \frac{1}{c_{j}} \tag{C.6}\\
x_{i}=\frac{h}{c_{i+1}} . \tag{C.7}
\end{gather*}
$$

If $x_{i}=\frac{h}{c_{i}}$ pushes the sum of all uninhabitable and lower hierarchy patches higher than one, the first solution must hold. Alternatively $\frac{r}{r+h}-h \sum_{j=1}^{S} \frac{1}{c_{j}}$ must always be non-negative, since this expresses the proportion of patches 'left over' for state i. When $c_{i}=c$, this simplifies to
$c \geq i \frac{h}{r}(r+h)$. The highest species number that can persist, S^{*} is

$$
\begin{equation*}
S^{*}=\min \left(S, \mathrm{~d} \frac{c r}{h(r+h)} \mathrm{t}\right) \tag{C.8}
\end{equation*}
$$

Thus, for that case, the total solution is expressed as

$$
\begin{equation*}
\mathbf{x}^{*}=\left[\frac{h}{r+h}, \frac{h}{c}, \frac{h}{c}, \ldots, \frac{r}{r+h}-\frac{S^{*} h}{c}, 0, \ldots\right] \tag{C.9}
\end{equation*}
$$

Cases in which c_{i} is not the same among species follow a similar pattern. To test local stability, we constructed the Jacobian, \mathbf{J}, for this system:

$$
\left[\begin{array}{ccccc}
-\left(h+c \sum_{i=1}^{S} x_{i}\right)-r & -c x_{0}-r & -c x_{0}-r & \cdots & -c x_{0}-r \tag{C.10}\\
0 & c \sum_{j=i}^{S} x_{i} & -\left(h+c \sum_{j=i+1}^{S} x_{j}\right)+c x_{i-1} & c\left(x_{i-1}-x_{i}\right) & \cdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & c x_{S} & -h+c x_{s-1}
\end{array}\right]
$$

We substituted the solutions from Eq. C. 9 for systems with randomly generated parameter values for S, r, c over harvest rates ranging from zero to 10 . The eigenvalues, calculated with MATLAB, were always negative for these solutions, while other solutions (specifically, that for S^{*} one species lower) were unstable.

