Appendix B: Stability of the null model

The Jacobian matrix, which consists of partial derivatives of the differential equations, is:

$$
\mathbf{J}=\left(\begin{array}{ccccc}
-(h+r) & 0 & 0 & \cdots & 0 \tag{B.1}\\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-c y_{i} & 0 & \cdots & c\left(1-x_{\phi}\right)-h-2 c y_{i} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

Because the determinant for this matrix is just the product of the diagonal entries, the eigenvalues of the Jacobian are described by

$$
\begin{equation*}
0=[-(h+r)-\lambda] \Pi_{i=1}^{S}\left[c\left(1-x_{\phi}\right)-h-2 c y_{i}-\lambda\right] . \tag{B.2}
\end{equation*}
$$

The y_{i} are equivalent for all i, so we can simplify to

$$
\begin{equation*}
0=[-(h+r)-\lambda]\left[c\left(1-x_{\phi}\right)-h-2 c y_{i}-\lambda\right]^{S} . \tag{B.3}
\end{equation*}
$$

λ thus can take two values, $-(r+h)$ or $c\left(1-x_{\phi}\right)-h-2 c y_{i}$. The first is always negative, since r and h are non-negative. When $y_{i}=0, \lambda=\left(\frac{c r}{r+h}-h\right)$ is negative (and thus this solution is locally stable) whenever $c<h(r+h) / r$. The other solution is $y_{i}=r /(r+h)-h / c$, at which the dominant eigenvalue is

$$
\begin{equation*}
\lambda=c \frac{r}{r+h}-h-2 c\left(\frac{r}{r+h}-\frac{h}{c}\right) \tag{B.4}
\end{equation*}
$$

Setting $\lambda<0$, we find that this solution is stable when $c>h(r+h) / r$.

