
Appendix B: Stability of the null model  

The Jacobian matrix, which consists of partial derivatives of the differential equations, is:  
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Because the determinant for this matrix is just the product of the diagonal entries, the 

eigenvalues of the Jacobian are described by  
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The yis are equivalent for all i, so we can simplify to  
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λ thus can take two values, −(r +h) or c(1− x )−h−2cyi. The first is always negative, since r and 

h are non-negative. When yi = 0, 
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 is negative (and thus this solution is locally 

stable) whenever c < h(r+h) / r. The other solution is yi = r/(r+h) – h/c, at which the dominant 

eigenvalue is 
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Setting λ < 0, we find that this solution is stable when c > h(r+h) / r. 

  

 


