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Delta method

Under the Delta method, if:

then

Thus,

Delta method application

Variance estimator for log(7;c)

Let Y1 ~ BIN(ny,m), and let 7 = m¢, where ¢ is a constant. Because of the convergence
to normality of the sampling distribution of 7; we have:
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Now, under the delta method, let g(7) = log(7). This means ¢'(7) and we have:
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Thus, the variance of log(7) is:
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The estimator of the variance of log(7) will be:
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Variance estimator for log(7,)

Let Yo ~ BIN(ng,ms). Because of the convergence to normality of the sampling distribution
of 79 we have:
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Let g(mg) = log(ms). We have ¢'(my) = 7%2, resulting in:
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Thus, the variance of log(7s) is:

The estimator of the variance of log(7) will be:
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Variance estimator for log(7c x log 7o)
We note:
1. log(a x b) = log(a) + log(b).
2. Let X and Y be independent random variables, then Var(X +Y) = Var(X)+Var(Y).
Thus,
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Var(log(frlc X fm)) = Var(log(frlc)) + Var(log(fw)) =

The variance estimator is: . A
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Confidence interval for mc x 9

Because of the asymptopic normality of log(7;¢x 75), an approximate (1—«)100% confidence
interval for mc x my is given by:

0 x exp(E21-(a/2)0p);
2 _ (1—#1) + (1—72)

where 0 = Ti¢c X 79, and & - - )
0 mTiny Ton2



