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Appendix B: Technical details of the metacommunity model. 

This appendix describes the technical details of the meta-community model, the Bayesian estimation, 

and the model evaluation. In particular, we here describe the dispersal and the population dynamic 

components, whereas for the observational model, we refer to the main text. An overview of the model 

structure is given in Fig. B1.  

 

1. The diffusion model 

When constructing the population dynamic model, we use two quantities to characterize the movement 

process: Of these, ℛ𝑙𝑙𝑙𝑙
(𝑖𝑖) is the probability that an individual of species i initially in tree l will visit tree 

j before it dies. 𝑇𝑇𝑙𝑙
(𝑖𝑖) is the time that an individual of species i currently in tree j will spend in tree j 

before it dies. These two quantities can be calculated analytically from the diffusion model 

(Ovaskainen and Cornell 2003, Zheng et al. 2007). This model accounts for the spatial configuration 

of the whole landscape, since the movement of an individual is generally affected not only by the focal 

patches (including the distance between them) but also by the other trees it encounters.  

 While we account for the full landscape structure in the population dynamic model, for the 

dispersal experiments we only consider the source area and one target tree at a time. This solution is 

justified by the distribution of target trees in the dispersal experiments, where these trees were small 

and far away from each other.  

Since species are assumed to be independent, we drop the species index (𝑖𝑖) in the subscript and 

let 𝓡𝓡 be the matrix of dimension 𝑛𝑛𝑇𝑇 × 𝑛𝑛𝑇𝑇 with element ℛ𝑙𝑙𝑙𝑙 and 𝑻𝑻 be the matrix with element 𝑇𝑇𝑙𝑙𝑙𝑙. 

The 𝑇𝑇𝑙𝑙  is given by the diagonal element 𝑇𝑇𝑙𝑙𝑙𝑙, and ℛ𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑙𝑙𝑙𝑙/𝑇𝑇𝑙𝑙𝑙𝑙. Thus we will focus on the 

calculation of the matrix 𝑻𝑻.  

Let 𝐷𝐷𝑙𝑙, 𝑘𝑘𝑙𝑙, and 𝛼𝛼𝑙𝑙 be the diffusion coefficient, relative habitat preference, and dispersal ability 

in patch 𝑙𝑙 = 1, … ,𝑛𝑛𝑇𝑇, respectively, and 𝐷𝐷𝑚𝑚, 𝑘𝑘𝑚𝑚, and 𝛼𝛼𝑚𝑚 for the surrounding matrix. We define two 

matrices 𝒁𝒁 with element 𝑍𝑍𝑙𝑙𝑙𝑙 and 𝑾𝑾 with element 𝑊𝑊𝑙𝑙𝑙𝑙 as follows 

𝑍𝑍𝑙𝑙𝑙𝑙 = ��1 − 𝛿𝛿𝑙𝑙𝑙𝑙�
𝐾𝐾0�𝛼𝛼𝑚𝑚𝑑𝑑𝑙𝑙𝑙𝑙�
𝐾𝐾0(𝛼𝛼𝑚𝑚𝑟𝑟𝑙𝑙)

+ 𝛿𝛿𝑙𝑙𝑙𝑙� , 
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𝑊𝑊𝑙𝑙𝑙𝑙 = 𝑍𝑍𝑙𝑙𝑙𝑙
𝐾𝐾0�𝛼𝛼𝑚𝑚𝑟𝑟𝑙𝑙�𝐼𝐼1�𝛼𝛼𝑙𝑙𝑟𝑟𝑙𝑙�
𝐾𝐾1�𝛼𝛼𝑚𝑚𝑟𝑟𝑙𝑙�𝐼𝐼0�𝛼𝛼𝑙𝑙𝑟𝑟𝑙𝑙�

, 

where 𝛿𝛿𝑙𝑙𝑙𝑙 = 1 if 𝑙𝑙 = 𝑗𝑗 and 0 otherwise, 𝑟𝑟𝑙𝑙 is the radius of patch 𝑗𝑗, 𝑑𝑑𝑙𝑙𝑙𝑙 is the distance between 

patch 𝑙𝑙 and patch 𝑗𝑗, and 𝐾𝐾𝜈𝜈 and 𝐼𝐼𝜈𝜈 are the modified Bessel functions of the first and the second 

kind, respectively. Let 𝚲𝚲�𝑥𝑥𝑙𝑙� be the diagonal matrix with jth diagonal element 𝑥𝑥𝑙𝑙. According to 

Appendix A of Zheng et al. (2007), it holds that 

𝑻𝑻 = �𝚲𝚲 �
𝐷𝐷𝑙𝑙𝑘𝑘𝑙𝑙𝛼𝛼𝑙𝑙 𝐼𝐼1�𝛼𝛼𝑙𝑙𝑟𝑟𝑙𝑙�
𝐷𝐷𝑚𝑚𝑘𝑘𝑚𝑚𝐼𝐼0�𝛼𝛼𝑙𝑙𝑟𝑟𝑙𝑙�

� + 𝚲𝚲�
𝛼𝛼𝑚𝑚 𝐾𝐾1�𝛼𝛼𝑚𝑚𝑟𝑟𝑙𝑙�
𝐾𝐾0�𝛼𝛼𝑚𝑚𝑟𝑟𝑙𝑙�

�𝒁𝒁−1�
−1

𝚲𝚲�
𝑘𝑘𝑙𝑙 𝐼𝐼1�𝛼𝛼𝑙𝑙𝑟𝑟𝑙𝑙�

𝐷𝐷𝑚𝑚𝑘𝑘𝑚𝑚𝛼𝛼𝑙𝑙𝐼𝐼0�𝛼𝛼𝑙𝑙𝑟𝑟𝑙𝑙�
� 

= �𝚲𝚲�𝐷𝐷𝑙𝑙𝑘𝑘𝑙𝑙𝛼𝛼𝑙𝑙� + 𝐷𝐷𝑚𝑚𝑘𝑘𝑚𝑚𝛼𝛼𝑚𝑚𝑾𝑾−1�−1𝚲𝚲�
𝑘𝑘𝑙𝑙 
𝛼𝛼𝑙𝑙
�. 

If 𝐷𝐷𝑙𝑙 = 𝐷𝐷𝑚𝑚 = 𝐷𝐷, 𝑘𝑘𝑙𝑙 = 𝑘𝑘, 𝑘𝑘𝑚𝑚 = 1, 𝛼𝛼𝑙𝑙 = 𝛼𝛼𝑚𝑚 = 𝛼𝛼 for 𝑗𝑗 = 1, …𝑛𝑛𝑇𝑇 , and by definition 𝛼𝛼 = �𝑚𝑚/𝐷𝐷 

where 𝑚𝑚 is the death rate, thus we have 

𝑻𝑻 =
1
𝑚𝑚�𝜹𝜹 +

1
𝑘𝑘
𝑾𝑾−1�

−1
 

where 𝜹𝜹 is an identity matrix with dimension 𝑛𝑛𝑇𝑇 × 𝑛𝑛𝑇𝑇. 

We use tildes to distinguish the quantities in the dispersal experiments from those in the 

observations in the island Wattkast. We calculate R�sj
(i) and T�j

(i) for the two dispersal experiments, 

where the effects of landscape configuration are ignored. It then holds that 

𝑅𝑅�𝑠𝑠𝑙𝑙
(𝑖𝑖) =

𝐾𝐾0�𝛼𝛼(𝑖𝑖)𝑑𝑑𝑆𝑆𝑙𝑙�
𝐾𝐾0(𝛼𝛼(𝑖𝑖)𝑟𝑟𝑆𝑆) , 

𝑇𝑇�𝑙𝑙
(𝑖𝑖) =

1
𝑚𝑚
�1 +

1
𝑘𝑘
𝐾𝐾1�𝛼𝛼(𝑖𝑖)𝑟𝑟𝑙𝑙�𝐼𝐼0�𝛼𝛼(𝑖𝑖)𝑟𝑟𝑙𝑙�
𝐾𝐾0�𝛼𝛼(𝑖𝑖)𝑟𝑟𝑙𝑙�𝐼𝐼1�𝛼𝛼(𝑖𝑖)𝑟𝑟𝑙𝑙�

�
−1

. 
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2. The process model 

Assuming the number of larvae is large and the larval survival probability is small, 𝑛𝑛𝑖𝑖𝑙𝑙(𝑡𝑡) can be 

approximated by a Poisson distribution 

𝑛𝑛𝑖𝑖𝑙𝑙(𝑡𝑡)|𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡 − 1),𝐸𝐸𝑖𝑖𝑙𝑙(𝑡𝑡)~Poisson �∑ 𝑎𝑎𝑖𝑖𝑙𝑙∗ (𝑡𝑡 − 1)𝑝𝑝𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)ℛ𝑙𝑙𝑙𝑙
(𝑖𝑖)

𝑙𝑙 �,   (Eq. B.1) 

where 𝑎𝑎𝑖𝑖𝑙𝑙∗ (𝑡𝑡 − 1) = 𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡 − 1) [1 − 𝐸𝐸𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)] and 𝐸𝐸𝑖𝑖𝑙𝑙(𝑡𝑡 − 1) is the indicator for the extinction 

experiment. The summation is over all the trees on the island, and the 𝑋𝑋|𝑌𝑌 denotes that the random 

variable X is conditional on Y. The dependencies on the process parameters, such as the larval 

surviving probabilities pil(t − 1) and dispersal parameters 𝛼𝛼𝑖𝑖 and 𝑘𝑘𝑖𝑖 are shown explicitly neither 

here nor in the followings.  

The total amount of time 𝑞𝑞𝑖𝑖𝑙𝑙(𝑡𝑡) spent in tree j by all females visiting the tree is gamma 

distributed 

𝑞𝑞𝑖𝑖𝑙𝑙(𝑡𝑡)|𝑛𝑛𝑖𝑖𝑙𝑙(𝑡𝑡)~Gamma �𝑛𝑛𝑖𝑖𝑙𝑙(𝑡𝑡),𝑇𝑇𝑙𝑙
(𝑖𝑖)�,       (Eq. B.2) 

where 𝑛𝑛𝑖𝑖𝑙𝑙(𝑡𝑡) is the shape parameter, and 𝑇𝑇𝑙𝑙
(𝑖𝑖) = 𝒯𝒯𝑙𝑙

(𝑖𝑖)/𝑚𝑚𝑖𝑖 the scale parameter. The number 𝑒𝑒𝑖𝑖𝑙𝑙(𝑡𝑡) 

of laid eggs by a mated female in tree j in year t is Poisson distributed 

 𝑒𝑒𝑖𝑖𝑙𝑙(𝑡𝑡)|𝑞𝑞𝑖𝑖𝑙𝑙(𝑡𝑡)~Poisson �𝑞𝑞𝑖𝑖𝑖𝑖
(𝑡𝑡)
𝜏𝜏𝑖𝑖
∗ �.       (Eq. B.3) 

The number 𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡) of 1st instar larva in tree j in year t is binomially distributed 

𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡)|𝑒𝑒𝑖𝑖𝑙𝑙(𝑡𝑡)~Binomial�𝑒𝑒𝑖𝑖𝑙𝑙(𝑡𝑡), 𝑠𝑠𝑖𝑖 �.       (Eq. B.4) 

Integrating over 𝑛𝑛𝑖𝑖𝑙𝑙(𝑡𝑡), 𝑞𝑞𝑖𝑖𝑙𝑙(𝑡𝑡), 𝑒𝑒𝑖𝑖𝑙𝑙(𝑡𝑡) in the Eqs. A.1–A.4, we obtain the following year-to-year 

transition probability for the state variable 𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡). 

𝑝𝑝�𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡)|𝒂𝒂(𝑡𝑡 − 1)�

= �
𝑒𝑒−�1−𝜑𝜑𝑖𝑖𝑖𝑖λ𝑖𝑖𝑖𝑖(𝑡𝑡−1)�                                                                                                     𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡) = 0
𝑒𝑒−λ𝑖𝑖𝑖𝑖(𝑡𝑡−1)λ𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)𝜑𝜑𝑖𝑖𝑙𝑙�1 − 𝜑𝜑𝑖𝑖𝑙𝑙�  1𝐹𝐹1�1 + 𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡), 2, λ𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)𝜑𝜑𝑖𝑖𝑙𝑙�       𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡) > 0 

, 

(Eq. B.5) 
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where  1𝐹𝐹1 is a confluent hypergeometric function (Weisstein 2014), λ𝑖𝑖𝑙𝑙(𝑡𝑡 − 1) = ∑ 𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)[1 −𝑙𝑙

𝐸𝐸𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)]𝑝𝑝𝑖𝑖𝑙𝑙(𝑡𝑡 − 1)ℛ𝑙𝑙𝑙𝑙
(𝑖𝑖), and 𝜑𝜑𝑖𝑖𝑙𝑙 = 1/ �1 + 𝒯𝒯𝑙𝑙

(𝑖𝑖)𝑓𝑓𝑖𝑖�. Here ℛ𝑙𝑙𝑙𝑙
(𝑖𝑖) and 𝒯𝒯𝑙𝑙

(𝑖𝑖) can be calculated 

according to the diffusion model in the previous section.  

Similarly, we build the process model for two dispersal experiments, and use tildes to distinguish 

the corresponding quantities. Let X denote the study site of the dispersal experiment, X=I 

corresponding to Inkoo and X=H to Hakoinen. Corresponding to Eq. (A.1), we have  

𝑛𝑛�𝑖𝑖𝑙𝑙
(𝑋𝑋)~Poisson �ℎ𝑖𝑖𝑠𝑠

(𝑋𝑋)𝑅𝑅�𝑠𝑠𝑙𝑙
(𝑖𝑖)�         (Eq. B.6) 

where only the contribution of source tree S in the center of the experiment is included. Similarly 

corresponding to Eqs. (A.2–A.4),  

𝑞𝑞�𝑖𝑖𝑙𝑙
(𝑋𝑋)|𝑛𝑛�𝑖𝑖𝑙𝑙

(𝑋𝑋)~Gamma �𝑛𝑛�𝑖𝑖𝑙𝑙
(𝑋𝑋),𝑇𝑇�𝑙𝑙

(𝑖𝑖)�,       (Eq. B.7) 

�̃�𝑒𝑖𝑖𝑙𝑙
(𝑋𝑋)|𝑞𝑞�𝑖𝑖𝑙𝑙

(𝑋𝑋)~Poisson �
𝑞𝑞�𝑖𝑖𝑖𝑖

(𝑋𝑋)

𝜏𝜏𝑖𝑖
∗ �,       (Eq. B.8) 

𝑎𝑎�𝑖𝑖𝑙𝑙
(𝑋𝑋)|�̃�𝑒𝑖𝑖𝑙𝑙

(𝑋𝑋)~Binomial ��̃�𝑒𝑖𝑖𝑙𝑙
(𝑋𝑋), 𝑠𝑠𝑖𝑖 �.       (Eq. B.9) 

Integrating over 𝑛𝑛�𝑖𝑖𝑙𝑙
(𝑋𝑋), 𝑞𝑞�𝑖𝑖𝑙𝑙

(𝑋𝑋), �̃�𝑒𝑖𝑖𝑙𝑙
(𝑋𝑋) in the Eqs. A.6–A.9, we obtain 

𝑝𝑝 �𝑎𝑎�𝑖𝑖𝑙𝑙
(𝑋𝑋)|ℎ𝑖𝑖𝑠𝑠

(𝑋𝑋)� = �
𝑒𝑒−�1−𝜑𝜑�𝑖𝑖𝑖𝑖λ�𝑖𝑖𝑖𝑖�                                                                        𝑎𝑎�𝑖𝑖𝑙𝑙

(𝑋𝑋) = 0

𝑒𝑒−λ�𝑖𝑖𝑖𝑖λ�𝑖𝑖𝑙𝑙𝜑𝜑�𝑖𝑖𝑙𝑙�1 −𝜑𝜑�𝑖𝑖𝑙𝑙� 1𝐹𝐹1 �1 + 𝑎𝑎�𝑖𝑖𝑙𝑙
(𝑋𝑋), 2,λ�𝑖𝑖𝑙𝑙𝜑𝜑�𝑖𝑖𝑙𝑙�              𝑎𝑎�𝑖𝑖𝑙𝑙

(𝑋𝑋) > 0 
 (Eq. B.10) 

where λ�𝑖𝑖𝑙𝑙 = ℎ𝑖𝑖𝑠𝑠
(𝑋𝑋)ℛ�𝑠𝑠𝑙𝑙

(𝑖𝑖), and 𝜑𝜑�𝑖𝑖𝑙𝑙 = 1/(1 + 𝒯𝒯�𝑙𝑙
(𝑖𝑖)𝑓𝑓𝑖𝑖) with 𝒯𝒯�𝑙𝑙

(𝑖𝑖) = 𝑇𝑇�𝑙𝑙
(𝑖𝑖)𝑚𝑚𝑖𝑖. 

 

3. Bayesian estimation 

The meta-community model parameters consist of 𝜎𝜎𝑝𝑝,𝝁𝝁𝐷𝐷 ,𝚺𝚺𝐷𝐷 ,µi
p, 𝜀𝜀𝑡𝑡,𝑖𝑖

𝑝𝑝 , ki,αi, fi,𝛾𝛾𝑖𝑖, 𝐿𝐿𝑙𝑙,ℎ𝑖𝑖𝑠𝑠
(𝐼𝐼),ℎ𝑖𝑖𝑠𝑠

(𝐻𝐻),  

𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡), where 𝑖𝑖 = 1, … ,𝑛𝑛𝑆𝑆, 𝑗𝑗 = 1, … ,𝑛𝑛𝑃𝑃, and 𝑡𝑡 = 1, … ,𝑛𝑛𝑇𝑇. We estimate parameters by Gibbs 

sampling. We denote by 𝐴𝐴𝐴𝐴(𝑑𝑑) the adaptive Metropolis algorithm for sampling 𝑑𝑑 dimensional 

parameters (Haario et al. 2001, Ovaskainen et al. 2008). In the 𝐴𝐴𝐴𝐴(𝑑𝑑) algorithm, the proposal 
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distribution is the 𝑑𝑑 dimensional normal distribution with the mean being the current value. If 𝑑𝑑 = 1 

the variance is adjusted to give the acceptance rate ~0.44 in the adaptive phase, and otherwise (when 

𝑑𝑑 > 1) the scale of covariance matrix is adjusted to give the acceptance rate ~0.234 (Gelman et al. 

2003). The covariance matrix is calculated based on the historical samplings in the adaptive phase. 

After the adaptive phase (initial 2000 iterations), the variance-covariance matrix is fixed. 

In the Gibbs sampler, the full conditional posterior distributions are extracted from the directed acyclic 

graph (Fig. B1) by considering only the edges involving the focal parameters (Gilks et al. 1996). The 

model parameters are divided into blocks, and each block is updated by the 𝐴𝐴𝐴𝐴(𝑑𝑑) algorithm if the 

direct sampling approach is not available or complicated. The following updates are the basic part of 

the Gibbs sampler.  

• Update 𝝁𝝁𝐷𝐷 by the 𝐴𝐴𝐴𝐴(4) algorithm.  

• Update 𝐿𝐿𝑙𝑙 independently for 𝑗𝑗 = 1. .𝑛𝑛𝑃𝑃 by the 𝐴𝐴𝐴𝐴(1) algorithm. 

• Update 𝛾𝛾𝑖𝑖 independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(1) algorithm. 

• Update 𝜺𝜺𝑖𝑖𝐷𝐷 independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(4) algorithm, where by definition 

𝜺𝜺𝑖𝑖𝐷𝐷 = �log(ki) , log � 1
αi
� , fi, µi

p� − 𝝁𝝁𝐷𝐷. 

• Update �ℎ𝑖𝑖𝑠𝑠
(𝐼𝐼),ℎ𝑖𝑖𝑠𝑠

(𝐻𝐻)� independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(2) algorithm. 

• Update  𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  independently for 𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1 and 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(1) algorithm. 

• Update 1/𝜎𝜎𝑝𝑝 by the Gamma distribution 

• Update 𝚺𝚺𝐷𝐷−1 by the Wishart Distribution 

• Update  𝑎𝑎𝑖𝑖𝑙𝑙(𝑡𝑡) independently for 𝑖𝑖 = 1, … ,𝑛𝑛𝑆𝑆, 𝑗𝑗 = 1, … ,𝑛𝑛𝑃𝑃, 𝑡𝑡 = 1, … ,𝑛𝑛𝑇𝑇 by the 𝐴𝐴𝐴𝐴(1) 

algorithm. 

• Update  �𝑎𝑎𝑖𝑖𝑙𝑙(1),𝑎𝑎𝑖𝑖𝑙𝑙(2), . . � independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 and 𝑗𝑗 = 1. . 𝑛𝑛𝑃𝑃 by the 𝐴𝐴𝐴𝐴(𝑛𝑛𝑌𝑌) 

algorithm. 

In addition, the following updates are performed to improve the mixing of MCMC. 
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• Update �𝜺𝜺𝑖𝑖𝐷𝐷 ,ℎ𝑖𝑖𝑠𝑠
(𝐼𝐼),ℎ𝑖𝑖𝑠𝑠

(𝐻𝐻),𝛾𝛾𝑖𝑖� independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(7) algorithm. 

• Update �(𝜺𝜺1𝐷𝐷)𝑐𝑐 , (𝜺𝜺2𝐷𝐷)𝑐𝑐 . . �𝜺𝜺𝑛𝑛𝑆𝑆
𝐷𝐷 �

𝑐𝑐
� independently for 𝑐𝑐 = 1. .4 by proposing 

Δ �(𝜺𝜺1𝐷𝐷)𝑐𝑐 , (𝜺𝜺2𝐷𝐷)𝑐𝑐 . . �𝜺𝜺𝑛𝑛𝑆𝑆
𝐷𝐷 �

𝑐𝑐
�, where Δ follows the proposal normal distribution with mean 0 and 

variance adjusted to give the acceptance rate ~0.44. This scale transformation is a generalized 

Gibbs sampler and the Jacobian factor is  |Δ|𝑛𝑛𝑆𝑆−1 (Liu and Sabatti 2000). 

• Update �𝛾𝛾1,𝛾𝛾2. . 𝛾𝛾𝑛𝑛𝑆𝑆� by proposing �𝛾𝛾1,𝛾𝛾2. . 𝛾𝛾𝑛𝑛𝑆𝑆� + Δ, where Δ follows the normal 

distribution with mean 0 and variance adjusted to give the acceptance rate ~0.44. 

• Update �𝜀𝜀𝑡𝑡,1
𝑝𝑝 , 𝜀𝜀𝑡𝑡,2

𝑝𝑝 . . 𝜀𝜀𝑡𝑡,𝑛𝑛𝑆𝑆
𝑝𝑝 � independently for 𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1 by proposing �𝜀𝜀𝑡𝑡,1

𝑝𝑝 , 𝜀𝜀𝑡𝑡,2
𝑝𝑝 . . 𝜀𝜀𝑡𝑡,𝑛𝑛𝑆𝑆

𝑝𝑝 � +

Δ, where Δ follows the normal distribution with mean 0 and variance adjusted to give the 

acceptance rate ~0.44. 

• Update �𝜀𝜀1,𝑖𝑖
𝑝𝑝 , 𝜀𝜀2,𝑖𝑖

𝑝𝑝 . . 𝜀𝜀𝑛𝑛𝑇𝑇−1,𝑖𝑖
𝑝𝑝 � independently 𝑖𝑖 = 2. .𝑛𝑛𝑆𝑆 by proposing �𝜀𝜀1,𝑖𝑖

𝑝𝑝 , 𝜀𝜀2,𝑖𝑖
𝑝𝑝 . . 𝜀𝜀𝑛𝑛𝑇𝑇−1,𝑖𝑖

𝑝𝑝 �  + Δ, 

where Δ follows the normal distribution with mean 0 and variance adjusted to give the 

acceptance rate ~0.44. 

• Conditional on �log(ki) , log � 1
αi
� , fi,µi

p� (𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆) update 𝝁𝝁𝐷𝐷 by the posterior 

multi-normal distribution.  Afterwards  𝜺𝜺𝑖𝑖𝐷𝐷 is set. 

• Conditional on 𝛿𝛿𝑡𝑡,𝑖𝑖 = �𝜺𝜺𝑖𝑖𝐷𝐷�4 + 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  (𝑡𝑡 = 1. .𝑛𝑛𝑃𝑃 − 1) update �𝜺𝜺𝑖𝑖𝐷𝐷�4 independently for 𝑖𝑖 =

1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(1) algorithm. Afterwards 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  is set. 

• Conditional on 𝜖𝜖𝑡𝑡,𝑖𝑖 = (𝝁𝝁𝐷𝐷)4 + 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  (𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆, 𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1) update (𝝁𝝁𝐷𝐷)4 by the 

𝐴𝐴𝐴𝐴(1) algorithm. Afterwards 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  is set. 

• Conditional on 𝛿𝛿𝑡𝑡,𝑖𝑖 = �𝜺𝜺𝑖𝑖𝐷𝐷�4 + 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  (𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1) update �𝜺𝜺𝑖𝑖𝐷𝐷�3 and �𝜺𝜺𝑖𝑖𝐷𝐷�4 

independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 by the 𝐴𝐴𝐴𝐴(2) algorithm. Afterwards 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  is set. 

• Conditional on 𝜖𝜖𝑡𝑡,𝑖𝑖 = (𝝁𝝁𝐷𝐷)4 + 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  (𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆, 𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1) update (𝝁𝝁𝐷𝐷)3 and (𝝁𝝁𝐷𝐷)4 

by the 𝐴𝐴𝐴𝐴(2) algorithm. Afterwards 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  is set. 
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• Conditional on 𝛿𝛿𝑡𝑡,𝑖𝑖 = �𝜺𝜺𝑖𝑖𝐷𝐷�4 + 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  (𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1) update 𝜺𝜺𝑖𝑖𝐷𝐷 independently for 𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆 

by the 𝐴𝐴𝐴𝐴(4) algorithm. Afterwards 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  is set. 

• Conditional on 𝜖𝜖𝑡𝑡,𝑖𝑖 = (𝝁𝝁𝐷𝐷)4 + 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  (𝑖𝑖 = 1. .𝑛𝑛𝑆𝑆, 𝑡𝑡 = 1. .𝑛𝑛𝑇𝑇 − 1) update 𝝁𝝁𝐷𝐷 by the 𝐴𝐴𝐴𝐴(4) 

algorithm. Afterwards 𝜀𝜀𝑡𝑡,𝑖𝑖
𝑝𝑝  is set. 

The MCMC chain was run for more than 8000 iterations. We took every second generation for the last 

4000 iterations resulting in a total of 2000 samples. 

 

4. Priors for Bayesian analysis 

We assigned for 𝑎𝑎𝑖𝑖𝑙𝑙(1) a geometric prior distribution with mean 𝛾𝛾𝑖𝑖𝜇𝜇𝑙𝑙𝐿𝐿, where 𝛾𝛾𝑖𝑖 denotes the mean 

number of larvae of species 𝑖𝑖 per leaf; ln (𝛾𝛾𝑖𝑖) was assumed to be normally distributed with mean 

ln (𝛾𝛾𝑖𝑖
(0)) and variance 1, where the expected value 𝛾𝛾𝑖𝑖

(0) was measured from an independent data set 

(Table A1).  

For ln (ℎ𝑖𝑖𝑙𝑙
(𝑋𝑋)) (𝑋𝑋 = 𝐼𝐼,𝐻𝐻 and 𝑖𝑖 = 1, … ,𝑛𝑛𝑆𝑆), we assumed a normal distribution with mean 

ln (10) and variance 1. For the mean vector 𝛍𝛍 we assumed a multivariate normal prior with mean 

ln(200), ln(200), ln(10), Log(0.1) for the components 1, 2, 3 and 4, respectively, variance 100 for 

each component, and zero covariance for pairs of components. For the variance-covariance matrix Σ 

we assigned the scaled inverse–Wishart prior distribution with 6 degrees of freedom and identity scale 

matrix, and the gamma distribution with shape 2 and scale 1 for 𝜎𝜎𝑝𝑝2. 

 

5. Model validation 

We first tested the validity of the parameter estimation scheme by fitting the model to simulated data 

generated by the model. The estimation procedure was able to identify the parameter values used to 

generate the data, as shown by a close match between estimated and true parameter values: the 

posterior medians were unbiased estimates of the true values, and 95% credibility intervals contained 

the true parameter values in ca. 95% of the cases (Fig. B2). We then fitted the model to the real data, 
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and evaluated the model performance by predictive posterior simulations, showing that the model was 

able to reproduce key structural aspects of the data both at the levels of individual species (Fig. B3) 

and the entire community (Fig. B4). This comparison suggests that the structural model assumptions 

are compatible with the data. 
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FIG. B1. Probabilistic structure of the model illustrated as a directed acyclic graph (DAG). Solid 

arrows denote probabilistic dependencies, dashed arrows deterministic dependencies. Rectangles refer 

to observed data, and circles to unknown quantities to be estimated. An explanation of data and 

specific parameters are shown below the DAG. 
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FIG. B2. Model validation by simulating data for five species (Acal, Acur, Afoe, Amit, and Apseas; 

for the abbreviations used, see Table A1). True parameter values used in simulating data are shown as 

the crosses in the first row panels, and on the x-axis in the other panels. Posterior medians and 95% 

central intervals are denoted by the black dots and the error bars, respectively. The solid black line 

denotes the line 𝑦𝑦 = 𝑥𝑥.  
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FIG. B3. Posterior predictive distributions of responses at the level of individual species. Shown are 

abundances for each species in each year (t = 1 refers to year 2003). The crosses refer to true 

abundances; the black dots refer to median values, the error bars to the corresponding 95% central 

posterior intervals. 
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FIG. B4. Posterior predictive distributions of emergent properties at the level of the entire community. 

Shown is species richness (number of species) for 50 surveyed trees (as obtained by merging some of 

88 individual trees surveyed in years 2003–2008; see text for details). The black dots refer to median 

values, the error bars to the corresponding 95% central posterior intervals. Empirically observed 

richness values are shown as crosses. Predictive richness was obtained by binomial sampling from the 

estimated posterior abundances.  
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FIG. B5. Median posterior interspecific correlation coefficients for residual species-specific 

abundances. Red refers to the positive correlations and blue to negative correlations. The color 

identifies the strength of the correlation: the darker the color, the larger is the absolute correlation 

value. Pairs of species for which the posterior probability of the correlation being positive (or 

negative, which was not the case in these data) was greater than 0.9 are labeled with stars. For an 

explanation of species-specific abbreviations, see Table A1. 
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