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Simulations of multi-part compositional predictors within a zero-truncated Poisson regression 

model with proportions of cover types and correlations similar to those in the breeding sage-

grouse location count model of Rice et al. (2013) and an explanation and evaluation of how they 

used predicted mean counts to predict probability of occupancy. 

 

Simulations of model-averaged compositional predictors 

 Because the data used by Rice et al. (2013) were not available, I demonstrate the 

properties of model-averaged estimates for compositional predictors by simulating data that is 

similar to the pattern Rice et al. (2013) observed for breeding sage-grouse.   Here I combine the 

original 13-part composition of cover type proportions in Rice et al. (2013) into a simpler 5-part 

composition that provides a more tractable number of candidate models to estimate.   I combined 

all the shrub cover types (sagebrush, mountain shrub, salt desert shrub, and shrubland) into one 

cover type designated sagebrush/shrub (X1) which is structured to vary uniformly from 0.50-

0.95.  All herbaceous cover types likely to be used by sage-grouse (grassland, riparian, and 

agriculture) in the breeding season were combined into one cover type designated herbaceous 

(X2) that varies uniformly from 0.00-0.30, with the constraint that the sum of the proportions of 

these two cover types (X1 + X2) range from 0.80-1.00, and that both these cover types were 

negatively correlated with the forest (X3) and alpine (X4) cover types (Table B1).  The fifth part, 

proportion urban, was given as a proportion 0.00-0.02 and was excluded from all models similar 

to Rice et al. (2013).   This yields a linear function of X1 + X2 that is linearly related to X3 + X4 

with r = −0.998 for the sample of n = 200 1-km2 units used in estimation.  
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The R script in Supplement 2 was used to generate the five predictors with the unit sum 

constraint and to provide random variables from a Poisson regression model with E[y|X] = 

exp(−5.8 + 6.3X1 + 15.2X2).  The nonzero subset of random variables (n = 165) was retained for 

model estimation.   I estimated all eight candidate models that included the sagebrush/shrub (X1) 

predictor with a zero-truncated Poisson regression following the protocol of Rice et al. (2013), 

computed AIC weights, and obtained model-averaged estimates of parameters for all four 

predictors, where estimates of zero were used for models where the predictor was not included 

for estimation (Burnham and Anderson 2002, Lukacs et al. 2010).  I did not use a mixed-effect 

model as Rice et al. (2013) did because the incorporation of random effects has no bearing on the 

issues with compositional predictor variables.   I also computed variance inflation factors and 

partial standard deviations that account for the multicollinearity among predictors within each 

model and provided standardized estimates (based on transforming the Xi) and computed model-

averaged standardized estimates. 

My model-averaged estimates are positive for the predictors positively related to sage-

grouse location counts and negative for those inversely related by definition of the composition 

(Table B2) similar to the pattern observed by Rice et al. (2013, Table 3).  But note that some 

estimates for the sagebrush/shrub predictor (X1) are negative even for models with substantial 

AIC weight (Table B2).  The model-averaged estimates for both sagebrush/shrub (X1) and 

herbaceous (X2) predictors are severely attenuated compared to the parameter values because of 

the reductions in estimate size when the redundant predictors forest (X3) and alpine (X4) are 

included in models, with more pronounced deviations for the sagebrush/shrub predictor.  The 

extreme differences among models in partial standard deviations for a given predictor indicate 

the major scale changes in units, precluding any meaningful use of simple model-averaged 
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estimates.   But in this example, even the standardized parameter estimates have wide variation, 

especially for the sagebrush/shrub predictor (Table B2) due to the effect of including redundant 

compositional predictors.   Clearly, with this level of redundancy associated with compositional 

predictors, there must be some additional constraints imposed on the candidate model set 

considered, e.g., just one subset of predictors, either the sagebrush/shrub and herbaceous 

predictors or the forest and alpine predictors but not both.  Both subsets of predictors might be 

incorporated simultaneously into model estimates if they are transformed with orthonormalizing 

log ratios (Aitchison and Egozcue 2005, Hron et al. 2012).   Unfortunately, this does change the 

interpretation of the parameter estimates.  

Predicting model-averaged mean counts from model-averaged regression coefficients 

 In this example with the given AIC weights among models, there is minimal difference 

among means estimated by model-averaging the predicted mean counts across the eight models 

(correct) compared to estimating model-averaged mean counts based on using model-averaged 

estimates for predictors (incorrect) across the observed range of predictor values (differences in 

predicted means range 0.00-0.025).  However, this similarity or difference is a function of the 

difference in magnitude of estimates and their interactions with the AIC weights.   For example, 

if I use the same model estimates as in Table B2 but assign them equal AIC weights (wj = 1/8), 

then the difference between the correct and incorrect predictions of means are now substantially 

larger (differences in predicted means range 0.004-1.404). 

Rice et al. (2013) also apparently used their model-averaged predictions of mean counts 

of telemetry locations to make predictions for the probability of any count ≥1, i.e., probability of 

occupancy.  It is not clear why Rice et al. (2013) made this transformation nor do they discuss 

the consequences of shifting to predicting probabilities of occupancy.  They apparently 
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accomplished this by using the relationship between predicted means from a zero-truncated 

Poisson distribution and predicted means from a conventional Poisson distribution, which 

allowed for computing probabilities of counts ≥1 (W. Thogmartin, personal communication). 

Given a zero-truncated Poisson distribution with mean uij /(1 – exp(−uij)), the 

corresponding Poisson distribution with mean uij (using Rice et al. 2013 notation for individual i 

and population j) has probabilities of y ≥ 1 equal to P(yij ≥ 1| uij) = 1 – exp(−uij), a logistic 

response curve that transforms the exponential rates of change in mean counts to very different 

rates of change in the probability of occupancy scale (Figure B1).  The response curve for 

Poisson probabilities of counts ≥1 has the inverse pattern of the response curve for means of the 

Poisson distribution associated with those probabilities, changing very rapidly for probabilities 

associated with means ≤2 and much less rapidly for probabilities associated with means >2.  The 

implications of this are that the predicted probabilities of occupancy that were mapped in Rice et 

al. (2013, Figure 2) imply greater discrimination among areas without any sage-grouse than are 

reasonable to infer from a model estimated from samples only where sage-grouse occurred.  

Conversely, by shifting to predicting probabilities of occupancy, Rice et al. (2013) eliminated 

most of the response sensitivity to varying amounts of sage-grouse use that they actually 

modeled.  Furthermore, their model validation was only performed on independent data where 

sage-grouse occurred (another telemetry data set and lek count data), providing no substantiation 

of the modeled relationships for areas unlikely to be occupied sage-grouse habitat which 

composed >50% of the mapped area for which predictions were made (Rice et al. 2013, compare 

Figures 1 and 2).  Other aspects of their model validation exercise seemed questionable even for 

occupied sage-grouse areas, e.g., a mismatch between statistical units for predictions compared 

to observations for their rank correlations.   
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Other issues masked by model averaging 

One of the unfortunate consequences of model averaging for multimodel inference is that 

people often fail to pay attention to important statistical details relevant to every single candidate 

model as noted by Giudice et al. (2012).  There are several notable issues in the Rice et al. (2013) 

sage-grouse models that fall into that category, including poor use of random effects on just the 

intercept to account for repeated measures (Gillies et al. 2006, Schielzeth and Forstmeier 2008), 

basing predictions on a subject-specific effect rather than a population effect averaged across 

individual grouse (Fieberg et al. 2009), and failure to report sample size for any models.   

Addressing any or all of these issues would have been more productive for Rice et al. (2013) 

than trying to address multimodel inferences by model averaging.  
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TABLE B1.  Correlation matrix of simulated sage-grouse location counts (y) in 1-km2 units from a 

Poisson distribution with a multi-part composition of proportion of cover types as predictors (n = 

200); sagebrush/shrub (X1), herbaceous (X2), forest (X3), and alpine (X4); where the mean count 

was given by E[y|X] = exp(−5.8 + 6.3X1 + 15.2X2).  Simulation conditions were selected to be 

similar to those estimated for breeding sage-grouse in Rice et al. (2013). 

 y X1 X2 X3 X4 
y 1.000 −0.081 0.705 −0.543 −0.507 

X1  1.000 −0.525 −0.498 −0.597 

X2   1.000 −0.419 −0.225 

X3    1.000 0.644 

X4     1.000 
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TABLE B2.  Parameter estimates for the four predictors in eight models that included X1, 

proportion sagebrush/shrub cover type, in the simulated zero-truncated Poisson model for sage-

grouse location counts (n = 165).  Unstandardized estimates and their standard errors, AIC 

weights wj, and model-averaged estimates ignore the multicollinear covariance structure.  Also 

provided are the inverse of the variance inflation factors VIFij
−1, partial standard deviations of 

Xij, parameter estimates �̂�𝛽𝑖𝑖𝑖𝑖∗  standardized by their partial standard deviations and their standard 

errors, and the model-averaged standardized parameter estimate and its standard error that 

account for scale changes associated with multicollinear predictors. 

 
β1 rate of change with proportion sagebrush/shrub (6.3) 

         

Predictors 
used 

Unstandardized 
estimates 

   
Partial  
SD X1j  

Standardized 
 estimates  

�̂�𝛽1𝑖𝑖 se �(�̂�𝛽1𝑖𝑖|gj) wj VIF1j
−1 �̂�𝛽1𝑖𝑖∗  se �(�̂�𝛽1𝑖𝑖∗ |gj) 

X1 −0.791 0.377 <0.001 1.000 0.0925 −0.073 0.035 

X1, X2 6.813 0.646 0.349 0.540 0.0682 0.465 0.044 

X1, X3 −5.410 0.477 <0.001 0.797 0.0828 −0.448 0.040 

X1, X4 −7.068 0.558 <0.001 0.591 0.0713 −0.504 0.040 

X1, X2, X3 6.142 1.292 0.154 0.114 0.0314 0.193 0.041 

X1, X3, X4 −8.079 0.575 0.233 0.616 0.0730 −0.590 0.042 

X1, X2, X4 6.868 1.494 0.128 0.106 0.0303 0.208 0.045 

X1, X2, X3, X4 −2.050 6.315 0.136 0.005 0.0064 −0.013 0.041 

 
�̂̅�𝛽1 and se� �̂̅�𝛽1: 

 
2.040 

 
6.376 

 
w+(1) = 1.000 

 
 

  
0.079 

      
  0.342 

 
 

β2 rate of change with proportion herbaceous (15.2) 
         

8 
 



Predictors 
used 

Unstandardized 
estimates 

   
Partial  
SD X2j  

Standardized 
 estimates  

�̂�𝛽2𝑖𝑖 se �(�̂�𝛽2𝑖𝑖|gj) wj VIF2j
−1 �̂�𝛽2𝑖𝑖∗  se �(�̂�𝛽2𝑖𝑖∗ |gj) 

X1 0.000 0.000 <0.001   0.000 0.000 

X1, X2 14.950 0.809 0.349 0.540 0.0549 0.821 0.044 

X1, X3 0.000 0.000 <0.001   0.000 0.000 

X1, X4 0.000 0.000 <0.001   0.000 0.000 

X1, X2, X3 14.223 1.456 0.154 0.139 0.0280 0.398 0.041 

X1, X3, X4 0.000 0.000 0.233   0.000 0.000 

X1, X2, X4 15.001 1.490 0.128 0.167 0.0306 0.459 0.046 

X1, X2, X3, X4 6.066 6.326 0.136 0.007 0.0064 0.039 0.040 

 
�̂̅�𝛽2 and se� �̂̅�𝛽2: 

 
10.152 

 
6.404 

 
w+(2) = 0.767 

 
 

  
0.412 

      
  0.306 

 
 

β3 rate of change with proportion forest 
         

Predictors 
used 

Unstandardized 
estimates 

   
Partial  
SD X3j  

Standardized 
 estimates  

�̂�𝛽3𝑖𝑖 se �(�̂�𝛽3𝑖𝑖|gj) wj VIF3j
−1 �̂�𝛽3𝑖𝑖∗  se �(�̂�𝛽3𝑖𝑖∗ |gj) 

X1 0.000 0.000 <0.001   0.000 0.000 

X1, X2 0.000 0.000 0.349   0.000 0.000 

X1, X3 −21.350 1.401 <0.001 0.797 0.0447 −0.954 0.063 

X1, X4 0.000 0.000 <0.001   0.000 0.000 

X1, X2, X3 −1.465 2.449 0.154 0.198 0.0224 −0.033 0.055 

X1, X3, X4 −15.129 1.493 0.233 0.613 0.0393 −0.595 0.059 

X1, X2, X4 0.000 0.000 0.128   0.000 0.000 

X1, X2, X3, X4 −9.216 6.344 0.136 0.026 0.0082 −0.075 0.052 
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�̂̅�𝛽3 and se� �̂̅�𝛽3: 

 
−5.005 

 
6.471 

 
w+(3) = 0.522 

 
 

  
−0.154 

      
  0.210 

 
 

β4 rate of change with proportion alpine 
         

Predictors 
used 

Unstandardized 
estimates 

   
Partial  
SD X4j  

Standardized 
 estimates  

�̂�𝛽4𝑖𝑖 se �(�̂�𝛽4𝑖𝑖 |gj) wj VIF4j
−1 �̂�𝛽4𝑖𝑖∗  se �(�̂�𝛽4𝑖𝑖∗ |gj) 

X1 0.000 0.000 <0.001   0.000 0.000 

X1, X2 0.000 0.000 0.349   0.000 0.000 

X1, X3 0.000 0.000 <0.001   0.000 0.000 

X1, X4 −23.981 1.401 <0.001 0.591 0.0285 −0.683 0.040 

X1, X2, X3 0.000 0.000 0.154   0.000 0.000 

X1, X3, X4 −14.860 1.528 0.233 0.497 0.0262 −0.389 0.040 

X1, X2, X4 0.104 2.543 0.128 0.192 0.0163 0.003 0.078 

X1, X2, X3, X4 −8.724 6.581 0.136 0.026 0.0060 −0.052 0.040 

 
�̂̅�𝛽4 and se� �̂̅�𝛽4: 

 
−4.637 

 
6.484 

 
w+(4) = 0.498 

 
 

  
−0.098 

      
  0.142 
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FIG. B1. Top panel is exponential mean response curves for zero-truncated Poisson regression 

(dashed line) and corresponding Poisson regression (solid line) model generated by following R 

code: x <- 1:200/200; mean.y <- exp(-2.1 + 4.9*x); ztp.mean.y <- exp(-2.1 + 

4.9*x)/(1-exp(-exp(-2.1 + 4.9*x))); plot(x,ztp.mean.y,type="l", xlab="X", 

ylab="Mean count",ylim=c(0,16));par(new=T); plot(x,mean.y,type="l", xlab="X", 

ylab = "Mean count"); abline(v=c(0.4286, 0.570),lty=1). Bottom panel is logistic 

response curve for associated probabilities of Y  ≥ 1 (occupancy) for Poisson regression given the 

means in the top panel generated by following R code: ge1.mean.y <- 1 - ppois(0, 

mean.y); plot(x,ge1.mean.y,ylim=c(0,1),type="l",ylab="Poisson P(Y>=1|u)", 

xlab="X"); abline(v=c(0.4286,0.570),lty=1). Dotted vertical lines in both panels 

indicate where a predicted mean count = 1.0 and its corresponding predicted probability of 

counts ≥1 = 0.632 (at x = 0.43) and where a predicted mean count = 2.0 and its corresponding 

predicted probability of counts ≥1 = 0.865 (at x = 0.57) given the Poisson distribution. 
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