Appendix B - Proof of Eqs. A1.

Let χ_{σ} and χ_{C} be the characteristic polynomials of matrix \mathbf{M}_{σ} and \mathbf{C} respectively. Because $\mathbf{M}_{\sigma} = e\mathbf{C} + \sigma \mathbf{P'C}$, the explicit computation of det $(\mathbf{M}_{\sigma} - X\mathbf{I})$ gives $\chi_{\sigma}(X) = e^{n} (\chi_{C}(X/e) - \sigma Q_{\sigma}(X))$, where Q_{σ} is a polynomial of degree n-1 which coefficients depend on σ . As $\lambda_{M_{\sigma}}$ is an eigenvalue of \mathbf{M}_{σ} , it verifies $\chi_{\sigma}(\lambda_{M_{\sigma}}) = 0$, i.e.,

 $\chi_C(\lambda_{M_{\sigma}}/e) = \sigma Q_{\sigma}(\lambda_{M_{\sigma}}).$

Assuming **C** is primitive and irreducible, the dominant eigenvalue λ_C of **C** is a single root of χ_C . There exists an open neighbourhood V of λ_C such that χ_C is continuously differentiable with nonzero derivative on V. Following the inverse function theorem, χ_C restricted to V is invertible, and its invert function, denoted χ_C^{-1} , is continuously differentiable. We then have $\lambda_{M_\sigma} = e\chi_C^{-1}(\sigma Q_\sigma(\lambda_{M_\sigma})).$

 $Q_{\sigma}(\lambda_{M_{\sigma}})$ is bounded for $\sigma \in V$, so a Taylor-Young expansion gives:

$$\lambda_{M_{\sigma}} = e\chi_{C}^{-1}(0) + e\frac{1}{\chi_{C} \circ \chi_{C}^{-1}(0)}\sigma Q_{\sigma}(\lambda_{M_{\sigma}}) + O(\sigma^{2})$$
$$= e\lambda_{C} + e\frac{1}{\chi_{C} (\lambda_{C})}\sigma Q_{\sigma}(\lambda_{M_{\sigma}}) + O(\sigma^{2})$$

As λ_C is a single root of χ_C , $\chi_C'(\lambda_C) \neq 0$, and we conclude that $\lambda_{M_{\sigma}} = e\lambda_C + O(\sigma)$.

Let us denote $\mathbf{A}_{\sigma} = \mathbf{M}_{\sigma} - \lambda_{M_{\sigma}}\mathbf{I}$, and $\widetilde{\mathbf{A}}_{\sigma}$ its adjugate matrix. $\mathbf{N}_{\mathbf{M}_{\sigma}}$ is a positive vector with norm 1 which verifies $\mathbf{A}_{\sigma}\mathbf{N}_{\mathbf{M}_{\sigma}} = \mathbf{0}$. When σ is small enough, the order of multiplicity of $\lambda_{M_{\sigma}}$ is 1 and the rank of \mathbf{A}_{σ} is n-1. Then $\widetilde{\mathbf{A}}_{\sigma}$ has rank 1 and verifies $\mathbf{A}_{\sigma}\widetilde{\mathbf{A}}_{\sigma} = \mathbf{0}$, which implies that $\mathbf{N}_{\mathbf{M}_{\sigma}}$ is the unique nonnegative vector of norm 1 which is the generator of the columns of $\widetilde{\mathbf{A}}_{\sigma}$. Elements of $\widetilde{\mathbf{A}}_{\sigma}$ are polynomials of the elements of \mathbf{A}_{σ} . We deduce that $\mathbf{N}_{\mathbf{M}_{\sigma}}$ tends continuously toward the positive vector $\mathbf{N}_{\mathbf{C}}$ and verifies $\mathbf{N}_{\mathbf{M}_{\sigma}} = \mathbf{N}_{\mathbf{C}} + O(\sigma)$.