Appendix B - Proof of Eqs. A1.

Let χ_{σ} and χ_{C} be the characteristic polynomials of matrix \mathbf{M}_{σ} and \mathbf{C} respectively. Because
$\mathbf{M}_{\sigma}=e \mathbf{C}+\sigma \mathbf{P}^{\prime} \mathbf{C}$, the explicit computation of $\operatorname{det}\left(\mathbf{M}_{\boldsymbol{\sigma}}-X \mathbf{I}\right)$ gives
$\chi_{\sigma}(X)=e^{n}\left(\chi_{C}(X / e)-\sigma Q_{\sigma}(X)\right)$, where Q_{σ} is a polynomial of degree $n-1$ which coefficients depend on σ. As $\lambda_{M_{\sigma}}$ is an eigenvalue of \mathbf{M}_{σ}, it verifies $\chi_{\sigma}\left(\lambda_{M_{\sigma}}\right)=0$, i.e.,

$$
\chi_{C}\left(\lambda_{M_{\sigma}} / e\right)=\sigma Q_{\sigma}\left(\lambda_{M_{\sigma}}\right)
$$

Assuming \mathbf{C} is primitive and irreducible, the dominant eigenvalue λ_{C} of \mathbf{C} is a single root of χ_{C}. There exists an open neighbourhood V of λ_{C} such that χ_{C} is continuously differentiable with nonzero derivative on V. Following the inverse function theorem, χ_{C} restricted to V is invertible, and its invert function, denoted $\chi_{C}{ }^{-1}$, is continuously differentiable. We then have

$$
\lambda_{M_{\sigma}}=e \chi_{C}{ }^{-1}\left(\sigma Q_{\sigma}\left(\lambda_{M_{\sigma}}\right)\right)
$$

$Q_{\sigma}\left(\lambda_{M_{\sigma}}\right)$ is bounded for $\sigma \in V$, so a Taylor-Young expansion gives:

$$
\begin{aligned}
\lambda_{M_{\sigma}} & =e \chi_{C}{ }^{-1}(0)+e \frac{1}{\chi_{C}{ }^{\prime} \circ \chi_{C}{ }^{-1}(0)} \sigma Q_{\sigma}\left(\lambda_{M_{\sigma}}\right)+O\left(\sigma^{2}\right) \\
& =e \lambda_{C}+e \frac{1}{\chi_{C}{ }^{\prime}\left(\lambda_{C}\right)} \sigma Q_{\sigma}\left(\lambda_{M_{\sigma}}\right)+O\left(\sigma^{2}\right)
\end{aligned}
$$

As λ_{C} is a single root of $\chi_{C}, \chi_{C}{ }^{\prime}\left(\lambda_{C}\right) \neq 0$, and we conclude that $\lambda_{M_{\sigma}}=e \lambda_{C}+O(\sigma)$.

Let us denote $\mathbf{A}_{\boldsymbol{\sigma}}=\mathbf{M}_{\boldsymbol{\sigma}}-\lambda_{M_{\sigma}} \mathbf{I}$, and $\widetilde{\mathbf{A}}_{\boldsymbol{\sigma}}$ its adjugate matrix. $\mathbf{N}_{\mathbf{M}_{\boldsymbol{\sigma}}}$ is a positive vector with norm 1 which verifies $\mathbf{A}_{\boldsymbol{\sigma}} \mathbf{N}_{\mathbf{M}_{\sigma}}=\mathbf{0}$. When σ is small enough, the order of multiplicity of $\lambda_{M_{\sigma}}$ is 1 and the rank of $\mathbf{A}_{\boldsymbol{\sigma}}$ is $n-1$. Then $\widetilde{\mathbf{A}}_{\boldsymbol{\sigma}}$ has rank 1 and verifies $\mathbf{A}_{\boldsymbol{\sigma}} \widetilde{\mathbf{A}}_{\boldsymbol{\sigma}}=\mathbf{0}$, which implies that $\mathbf{N}_{\mathbf{M}_{\boldsymbol{\sigma}}}$ is the unique nonnegative vector of norm 1 which is the generator of the columns of $\widetilde{\mathbf{A}}_{\sigma}$. Elements of $\widetilde{\mathbf{A}}_{\boldsymbol{\sigma}}$ are polynomials of the elements of $\mathbf{A}_{\boldsymbol{\sigma}}$. We deduce that $\mathbf{N}_{\mathbf{M}_{\boldsymbol{\sigma}}}$ tends continuously toward the positive vector $\mathbf{N}_{\mathbf{C}}$ and verifies $\mathbf{N}_{\mathbf{M}_{\mathrm{o}}}=\mathbf{N}_{\mathbf{C}}+O(\sigma)$.

