Appendix A - Effects of spatially variable LEP values.

If LEP values, e_j , are not uniform over space, we define the matrix $\mathbf{P}_{\sigma} = diag(e_j)$ and decompose it as $\mathbf{P}_{\sigma} = e\mathbf{I} + \sigma \mathbf{P}'$, where e and σ are the mean and standard deviation of LEP, \mathbf{I} is the identity matrix and \mathbf{P}' a diagonal matrix whose diagonal elements have zero mean and standard deviation equal to 1. We define $\mathbf{M}_{\sigma} = \mathbf{P}_{\sigma}\mathbf{C}$ so that Eq. 4 (see main text) now reads $\mathbf{N}_{t+1} = \mathbf{M}_{\sigma}\mathbf{N}_{t}$. We call $\lambda_{M_{\sigma}}$ the dominant eigenvalue of \mathbf{M}_{σ} and $\mathbf{N}_{M_{\sigma}}$ the positive associated eigenvector of norm 1 (considering $\|\cdot\|_{1}$). By continuity of eigenvalues, $\lambda_{M_{\sigma}}$ and $\mathbf{N}_{M_{\sigma}}$ tend respectively toward $e\lambda_{C}$ and \mathbf{N}_{C} (the non-negative eigenvector associated to the dominant eigenvalue λ_{C} of the connectivity matrix \mathbf{C}) when σ tends toward 0. Furthermore, when the matrix \mathbf{C} is primitive and irreducible, we have the following asymptotic property (see proof in appendix B):

$$\begin{cases} \lambda_{M_{\sigma}} = e\lambda_{C} + O(\sigma) \\ \mathbf{N}_{\mathbf{M}_{\sigma}} = \mathbf{N}_{C} + O(\sigma) \end{cases}$$
(A.1)

Eq. 4 reads $\mathbf{N}_{t+1} = (e\mathbf{I} + \sigma \mathbf{P}')\mathbf{CN}_t$. Asymptotically we have $\mathbf{N}_{t+1} = \lambda_{M_{\sigma}}\mathbf{N}_t = (e\lambda_C + O(\sigma))\mathbf{N}_t$. From these two equalities, and because $\sigma \mathbf{P}'\mathbf{C}/e = O(\sigma)$, we conclude that

$$\mathbf{CN}_{t+1} = \lambda_C \mathbf{N}_t + O(\sigma) \mathbf{N}_t$$
, i.e., $\sum_{j=1}^n c_{ij} N_{j,t} = \lambda_C N_{i,t} + O(\sigma) N_{i,t}$ for all *i*. Therefore

 $LR_i = \lambda_C SR_i(\sigma) + O(\sigma)$ and from equation (C1) we obtain $SR_i(\sigma) = SR_i + O(\sigma)$ for all *i* so that, finally, $LR = \lambda_C SR + O(\sigma)$, asymptotically.

Combining the asymptotic relationships $\lambda_{M_{\sigma}} = e\lambda_{C} + O(\sigma)$ and $LR = \lambda_{C}SR + O(\sigma)$ on each patch, we obtain $\lambda_{M_{\sigma}} = e \times LR / SR + O(\sigma)$ where *e* and σ are the mean and standard deviation of LEP.