Simulation descriptions and results

To explore the effects of SCR on inference for a spatial predictor of interest, we simulated 16 sets of 1000 datasets each. The 16 data-sets represent all possible combinations of 2 spatial predictor types, 4 autocorrelation types, and 2 effect sizes for the spatial predictor.

Each data-set was constructed of the following components:

- N=30 observations equally spaced along a one-dimensional transect, so the effective geographic locations G_i were $G_1=1, G_2=2, \ldots, G_{30}=30$.
- Two predictors:
 - A predictor X_i with a spatial relationship (spatial predictor, with one of two forms described below).
 - A predictor W_i with no spatial relationship to serve as comparison and check on computations.

Here we report results for only X, as the Type I error probabilities for a non-spatial predictor are uninfluenced by spatial autocorrelation.

- Errors ε_i : Errors were simulated according to one of four autocorrelation mechanisms, described below.
- Response: The response values were obtained as

$$Y_i = 1 + \beta_1 X_i + \beta_2 W_i + \varepsilon_i$$

where we considered two possible true values of the coefficient β_1 : 0 or 1.

Predictor Options:

(P1) Spatial Trend Predictor

For this option, predictor X_i has a mean trend determined by the spatial location. In particular, we used the following definition for X_i :

$$X_i = \frac{1}{3}G_i + \tau_i$$

where τ_i were independent N(0,2).

(P2) Spatially Autocorrelated Predictor

For this option, the mean of predictor X_i does not depend on the spatial location, but the values of X_i and X_j will be close if locations i and j are close. In particular, we used the following definition for X_i :

$$(X_1, X_2, \dots, X_{30})^T \sim MVN\left(\mathbf{0}_{n \times 1}, \mathbf{\Sigma}\right)$$

where the $\{i, j\}$ element of the covariance matrix Σ is given by

$$\sigma_{i,j} = 0.75^{|i-j|},$$

that is, the correlation between the X_i is AR(1) with $\rho = 0.75$.

Autocorrelation Options:

(A0) No Autocorrelation

Errors ε_i were generated according to

$$\varepsilon_i \sim_{iid} N(0,1)$$

(A1) Missing Spatial Predictor

Errors included the effect of a spatial trend predictor that was not measured or included in the model. In particular, the true model was given by

$$Y_i = 1 + \beta_1 X_i + \beta_2 W_i + \beta_3 Z_i + \varepsilon_i$$

where Z_i is a spatial predictor that is not included in the model fit, with form given by

$$Z_i = \frac{1}{6}G_i + \xi_i$$

where ξ_i were independent N(0,2), β_3 was set to 1, and ε_i were independent N(0,1).

(A2) Autocorrelated Errors

Errors were distributed with spatial autocorrelation, so errors corresponding to locations that were close together had similar values. In particular, we used the following definition for ε_i :

$$(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{50})^T \sim MVN(\mathbf{0}_{n \times 1}, \Sigma)$$

where the $\{i, j\}$ element of the covariance matrix Σ is given by

$$\sigma_{i,j} = 0.75^{|i-j|},$$

that is, the correlation between the ε_i is AR(1) with $\rho = 0.75$.

(A3) Location Effect

Errors included a direct spatial contribution. In particular, the errors ε_i were defined as

$$\varepsilon_i = \frac{1}{100} (G_i - 10)^2 + \eta_i$$

where η_i were independent N(0,1).

We recorded the following results for each simulated data set:

- 1. Coefficient estimate for predictor of interest: $\hat{\beta}_1$
- 2. Standard error estimate for $\hat{\beta}_1$: $s_{\hat{\beta}_1}$
- 3. p-value for testing $H_0: \beta_1 = 0$
- 4. 95% Confidence interval for β_1 :

$$CI = \left(\hat{\beta}_1 - t_{\alpha/2} s_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2} s_{\hat{\beta}_1}\right)$$

where the critical value $t_{\alpha/2}$ is the upper $\alpha/2$ quantile of a t-distribution with the appropriate degrees of freedom df.

To assess the performance of the methods considered, we calculate the following metrics across all 1000 simulations for each given scenario:

- 1. Average of the estimated coefficients $\hat{\beta}_1$
- 2. Standard error of the estimated coefficients $SE(\hat{\beta}_1)$
- 3. Rejection rate: What proportion of the 1000 simulated data-sets produced a p-value for testing H_0 : $\beta_1=0$ that was less than the desired significance level $\alpha=0.05$? If the inference for a method is accurate, we expect this proportion to be near 0.05=5% when the null hypothesis is true $(\beta_1=0)$, and we want this proportion to be as high as possible when the null hypothesis is false $(\beta_1=1)$.

- 4. Confidence Interval coverage: What proportion of the 1000 simulated data-sets produced a 95% confidence intervals for β_1 that contained the true value of β_1 ? If the inference for a method is accurate, we would like the confidence interval coverage to be 0.95 = 95%.
- 5. The number of significant spatial components that are identified, for each of the three different weight matrices. We denote these numbers by n_{K1} , n_{K2} , and n_{K3} for the number of components identified using weight matrix W1, W2, or W3 respectively. These numbers are tabled for the 1000 simulated data-sets.

The tables and plots below are organized by simulation scenario (Predictor type, Autocorrelation type, and True Effect type).

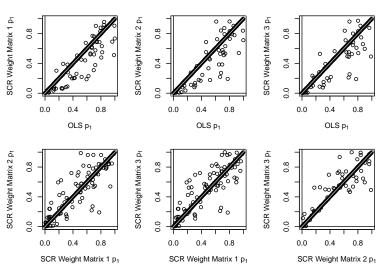
Simulation Results

Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A0) No autocorrelation

True Effect: (Null) $\beta_1 = 0$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	-0.001	0.053	0.947
SCR W1	-0.001	0.055	0.945
SCR W2	-0.001	0.056	0.944
SCR W3	-0.001	0.055	0.945
OLS + Loc	0.001	0.049	0.951

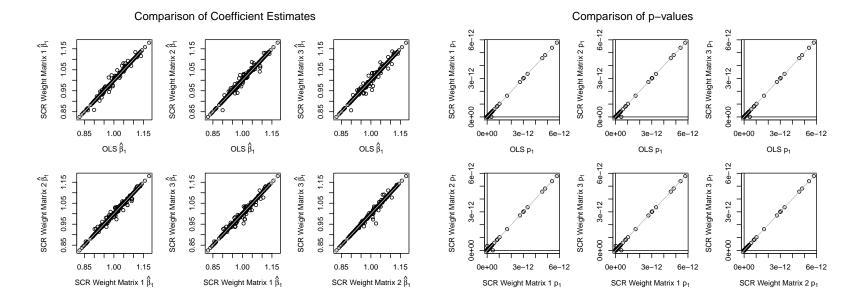
SCR Weight Matrix 2 β₁


	0	1
n_{K1}	944	56
n_{K2}	949	51
n_{K3}	953	47

Comparison of Coefficient Estimates

SCR Weight Matrix 1 $\hat{\beta}_1$ SCR Weight Matrix $2 \, \hat{\beta}_1$ SCR Weight Matrix $3 \, \hat{\beta}_1$ 0.1 0.1 0.1 0.0 -0.2 0.0 0.1 -0.2 0.0 0.1 -0.2 0.0 0.1 OLS $\hat{\beta}_1$ OLS $\hat{\beta}_1$ OLS β₁ SCR Weight Matrix 2 $\hat{\beta}_1$ SCR Weight Matrix $3 \, \hat{\beta}_1$ SCR Weight Matrix $3 \, \hat{\beta}_1$ 0.0 0.1 0.0 0.1 0.0 0.1 -0.2 0.0 0.1 0.0 0.1 0.0 0.1

SCR Weight Matrix 1 $\hat{\beta}_1$

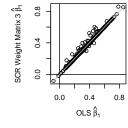

SCR Weight Matrix 1 β₁

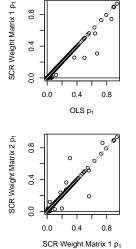
Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A0) No autocorrelation True Effect: (Alternative) $\beta_1 = 1$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.000	1.000	0.953
SCR W1	1.000	1.000	0.949
SCR W2	1.000	1.000	0.951
SCR W3	1.000	1.000	0.949
OLS + Loc	0.995	1.000	0.945

	0	1
n_{K1}	944	56
n_{K2}	939	61
n_{K3}	940	60

Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A1) Missing Spatial Predictor

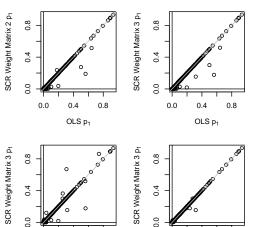

True Effect: (Null) $\beta_1 = 0$


	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	0.352	0.750	0.250
SCR W1	0.354	0.753	0.247
SCR W2	0.353	0.754	0.246
SCR W3	0.353	0.754	0.246
OLS + Loc	0.008	0.056	0.944

	0	1
n_{K1}	957	43
n_{K2}	954	46
n_{K3}	959	41

Comparison of Coefficient Estimates

SCR Weight Matrix 2 β_1 SCR Weight Matrix 2 β_2 SCR Weight Matrix 2 β_1 SCR Weight Matrix 2 β_2 SCR Weight Matrix 2 β_1 SCR Weight Matrix 2 β_2 SCR Weight Matrix

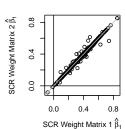


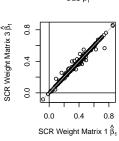
Comparison of p-values

0.4

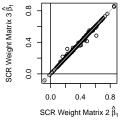
SCR Weight Matrix 1 p₁

0.8

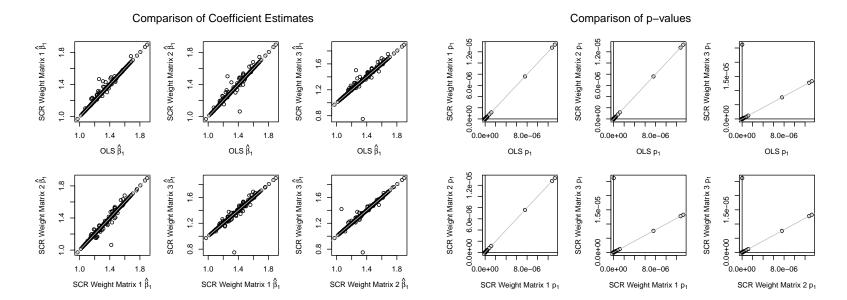



0.0

0.4


SCR Weight Matrix 2 p₁

8.0


0.8

Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A1) Missing Spatial Predictor True Effect: (Alternative) $\beta_1 = 1$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.348	1.000	0.260
SCR W1	1.349	1.000	0.252
SCR W2	1.349	1.000	0.252
SCR W3	1.349	1.000	0.250
OLS + Loc	0.995	0.983	0.941

	0	1
n_{K1}	963	37
n_{K2}	961	39
n_{K3}	953	47

Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A2) Autocorrelated Errors

True Effect: (Null) $\beta_1 = 0$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	-0.001	0.326	0.674
SCR W1	-0.001	0.415	0.585
SCR W2	-0.002	0.398	0.602
SCR W3	-0.002	0.415	0.585
OLS + Loc	-0.003	0.043	0.956

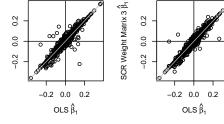
	0	1	2
n_{K1}	499	483	18
n_{K2}	524	462	14
n_{K3}	512	475	13

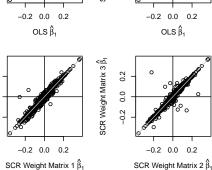
Comparison of Coefficient Estimates

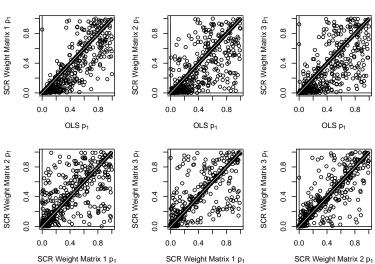
SCR Weight Matrix 1 $\hat{\beta}_1$ SCR Weight Matrix $2 \, \hat{\beta}_1$ 0.2

SCR Weight Matrix $3 \, \hat{\beta}_1$

0.0 0.2

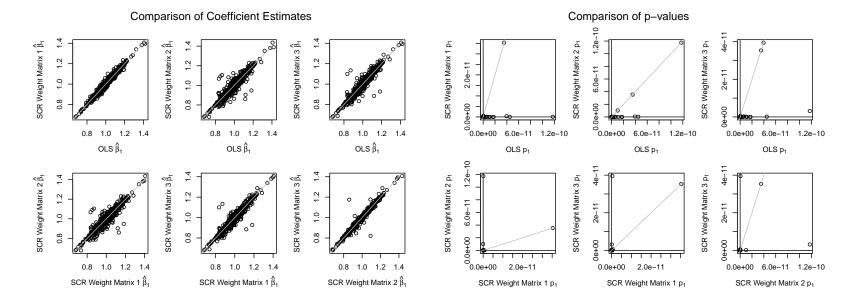

-0.2 0.0 0.2


OLS $\hat{\beta}_1$


-0.2 0.0 0.2

SCR Weight Matrix 1 $\hat{\beta}_1$

SCR Weight Matrix 2 β_1



Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A2) Autocorrelated Errors

True Effect: (Alternative) $\beta_1 = 1$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.002	1.000	0.641
SCR W1	1.002	1.000	0.552
SCR W2	1.001	1.000	0.561
SCR W3	1.002	1.000	0.546
OLS + Loc	1.000	1.000	0.940

	0	1	2
n_{K1}	513	474	13
n_{K2}	539	447	14
n_{K3}	532	457	11

Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A3) Location Effect

True Effect: (Null) $\beta_1 = 0$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	0.234	0.909	0.091
SCR W1	0.238	0.941	0.059
SCR W2	0.238	0.931	0.069
SCR W3	0.238	0.938	0.062
OLS + Loc	0.011	0.048	0.952

	0	1
n_{K1}	653	347
n_{K2}	760	240
n_{K3}	686	314

Comparison of Coefficient Estimates

SCR Weight Matrix 1 $\hat{\beta}_1$

0.1

SCR Weight Matrix 2 $\hat{\beta}_1$

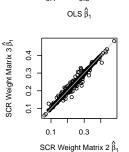
0.2 0.3 0.4

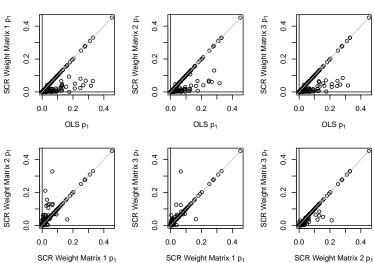
0.3

0.3

SCR Weight Matrix 1 β₁

SCR Weight Matrix $3 \, \hat{\beta}_1$


0.2 0.3 0.4


OLS β̂₁

SCR Weight Matrix 2 $\hat{\beta}_1$ SCR Weight Matrix $3 \ \beta_1$ 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.3 0.1 0.3 OLS β̂₁ OLS $\hat{\beta}_1$

0.3

SCR Weight Matrix 1 $\hat{\beta}_1$


Predictor: (P1) Spatial Trend Predictor Autocorrelation: (A3) Location Effect True Effect: (Alternative) $\beta_1 = 1$

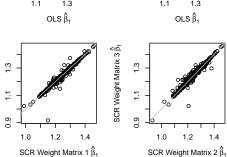
	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.231	1.000	0.080
SCR W1	1.235	1.000	0.054
SCR W2	1.234	1.000	0.064
SCR W3	1.234	1.000	0.056
OLS + Loc	1.003	1.000	0.944

	0	1	2
n_{K1}	650	348	2
n_{K2}	766	234	0
n_{K3}	680	319	1

SCR Weight Matrix 2 p₁

Comparison of p-values

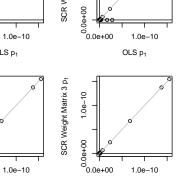
SCR Weight Matrix 2 β_1 Ors β_2 Ors β_2 Ors β_2 Ors β_2 Ors β_1 Ors β_2 Ors β_2 Ors β_2 Ors β_3 Ors β_4 Ors β_4

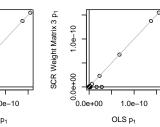

SCR Weight Matrix $3 \hat{\beta}_1$

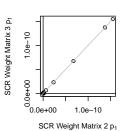
1.2 1.4

SCR Weight Matrix 1 $\hat{\beta}_1$

SCR Weight Matrix 2 β_1


1.0


OCS Weight Matrix 1 p. 100-10 OCS b¹


SCR Weight Matrix 1 p₁

SCR Weight Matrix 2 p₁

SCR Weight Matrix 1 p₁

Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A0) No autocorrelation

True Effect: (Null) $\beta_1 = 0$

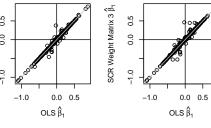
	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	-0.019	0.043	0.957
SCR W1	-0.019	0.047	0.953
SCR W2	-0.019	0.046	0.954
SCR W3	-0.018	0.048	0.952
OLS + Loc	-0.022	0.045	0.955

	0	1
n_{K1}	940	60
n_{K2}	949	51
n_{K3}	941	59

Comparison of Coefficient Estimates

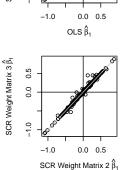
SCR Weight Matrix 2 β_1 SCR Weight Matrix 2 β_1 SCR Weight Matrix 2 β_1 SCR Weight Matrix 2 β_2 SCR Weight Matrix 2 β_3 SCR Weight Matrix

SCR Weight Matrix $3 \, \hat{\beta}_1$

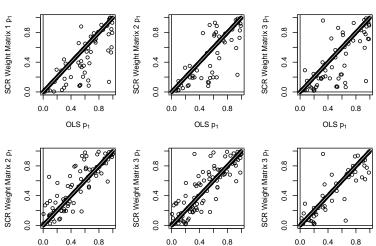

0.0 0.5

SCR Weight Matrix 1 β₁

0.0 0.5


-1.0

SCR Weight Matrix 2 β_1



0.0 0.5

SCR Weight Matrix 1 $\hat{\beta}_1$

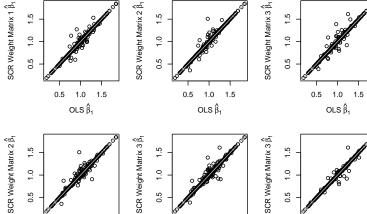
Comparison of p-values

SCR Weight Matrix 1 p₁

SCR Weight Matrix 2 p₁

SCR Weight Matrix 1 p₁

Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A0) No autocorrelation True Effect: (Alternative) $\beta_1 = 1$

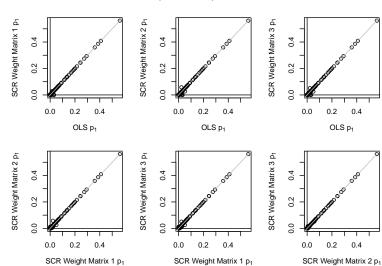

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	0.998	0.962	0.944
SCR W1	0.998	0.962	0.940
SCR W2	0.999	0.962	0.939
SCR W3	0.999	0.962	0.939
OLS + Loc	0.998	0.936	0.945

0.5 1.0 1.5

SCR Weight Matrix 2 β₁

	0	1	2
n_{K1}	937	62	1
n_{K2}	950	49	1
n_{K3}	946	53	1

Comparison of Coefficient Estimates

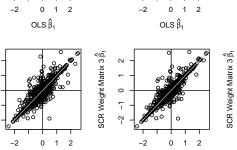


0.5 1.0 1.5

SCR Weight Matrix 1 $\hat{\beta}_1$

0.5 1.0 1.5

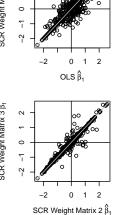
SCR Weight Matrix 1 β₁

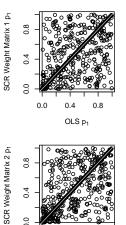

Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A1) Missing Spatial Predictor True Effect: (Null) $\beta_1 = 0$

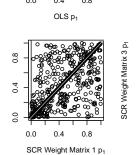
	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	-0.030	0.200	0.800
SCR W1	-0.055	0.210	0.790
SCR W2	-0.043	0.214	0.786
SCR W3	-0.045	0.209	0.791
OLS + Loc	-0.052	0.053	0.947

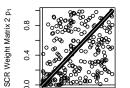
	0	1	2
n_{K1}	659	341	0
n_{K2}	747	253	0
n_{K3}	714	285	1

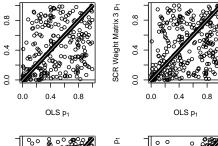
Comparison of Coefficient Estimates

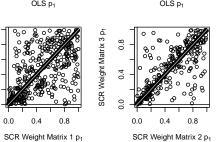

SCR Weight Matrix 1 $\hat{\beta}_1$ SCR Weight Matrix 3 β,




SCR Weight Matrix 1 $\hat{\beta}_1$


SCR Weight Matrix $2 \, \hat{\beta}_1$

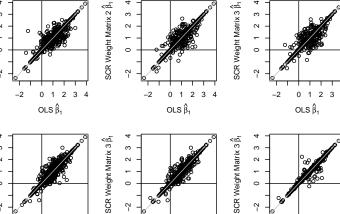

SCR Weight Matrix 1 $\hat{\beta}_1$

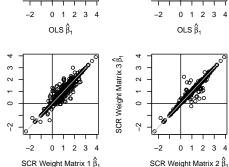


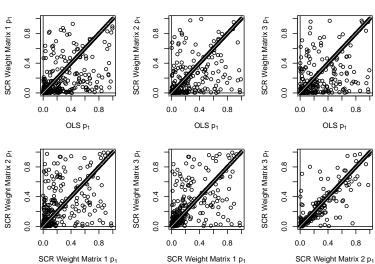
Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A1) Missing Spatial Predictor True Effect: (Alternative) $\beta_1 = 1$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.001	0.421	0.799
SCR W1	0.990	0.460	0.788
SCR W2	0.997	0.462	0.786
SCR W3	0.993	0.458	0.790
OLS + Loc	1.009	0.441	0.955

	0	1
n_{K1}	684	316
n_{K2}	759	241
n_{K3}	730	270

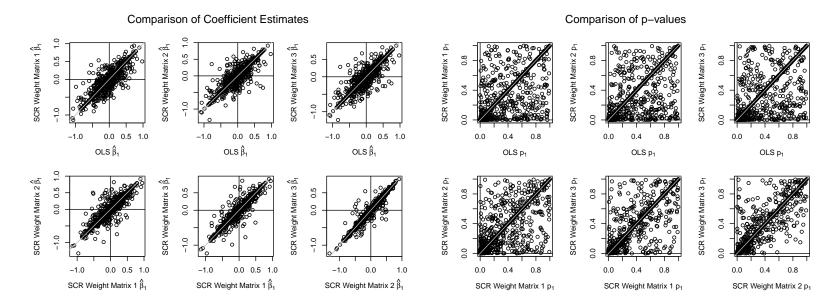

Comparison of Coefficient Estimates


SCR Weight Matrix 1 $\hat{\beta}_1$


SCR Weight Matrix $2 \, \hat{\beta}_1$

-2 0 1 2 3 4

SCR Weight Matrix 1 β₁



Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A2) Autocorrelated Errors True Effect: (Null) $\beta_1 = 0$

	0 C D .	D 1	OT
	Coef. Est.	Rejection	Cl
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	-0.009	0.248	0.752
SCR W1	-0.012	0.308	0.692
SCR W2	-0.009	0.319	0.681
SCR W3	-0.012	0.324	0.676
OLS + Loc	-0.013	0.237	0.760

	0	1	2
n_{K1}	506	481	13
n_{K2}	504	486	10
n_{K3}	514	477	9

Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A2) Autocorrelated Errors True Effect: (Alternative) $\beta_1 = 1$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.017	0.949	0.774
SCR W1	1.019	0.969	0.694
SCR W2	1.018	0.968	0.719
SCR W3	1.019	0.968	0.719
OLS + Loc	1.009	0.944	0.797

	0	1	2
n_{K1}	521	463	16
n_{K2}	520	467	13
n_{K3}	513	475	12

SCR Weight Matrix 1 p₁

SCR Weight Matrix 2 p₁

Comparison of Coefficient Estimates Comparison of p-values SCR Weight Matrix 1 $\hat{\beta}_1$ SCR Weight Matrix 2 $\hat{\beta}_1$ SCR Weight Matrix $3 \, \hat{\beta}_1$ SCR Weight Matrix 1 p₁ SCR Weight Matrix 2 p₁ SCR Weight Matrix 3 p₁ 1.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 OLS $\hat{\beta}_1$ OLS β̂₁ OLS $\hat{\beta}_1$ OLS p₁ OLS p₁ OLS p₁ 0.8 SCR Weight Matrix $2 \, \hat{\beta}_1$ SCR Weight Matrix $3 \hat{\beta}_1$ SCR Weight Matrix 2 p₁ SCR Weight Matrix 3 p₁ SCR Weight Matrix 3 p₁ SCR Weight Matrix $3 \, \hat{\beta}_1$ 9.0 9.0 1.0 0.4 1.0 2.0 1.0 2.0 1.0 2.0 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 0.0 0.0 0.4 SCR Weight Matrix 1 $\hat{\beta}_1$ SCR Weight Matrix 1 β₁

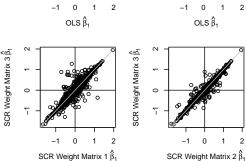
SCR Weight Matrix 1 p₁

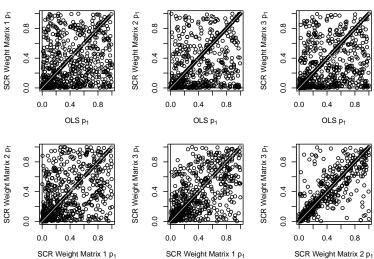
SCR Weight Matrix 2 β₁

Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A3) Location Effect

True Effect: (Null) $\beta_1 = 0$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	0	0.05	0.95
OLS	0.013	0.306	0.694
SCR W1	0.016	0.377	0.623
SCR W2	0.017	0.397	0.603
SCR W3	0.017	0.398	0.602
OLS + Loc	0.011	0.175	0.823


	0	1	2
n_{K1}	365	607	28
n_{K2}	513	480	7
n_{K3}	430	548	22


Comparison of Coefficient Estimates

SCR Weight Matrix 2 β₁ SCR Weight Matrix 2 β₂ ORS ψ₁ ORS ψ₂ ORS ψ₃ ORS ψ₄ ORS ψ₇ ORS

SCR Weight Matrix 2 $\hat{\beta}_1$

SCR Weight Matrix 1 $\hat{\beta}_1$

Predictor: (P2) Spatially Autocorrelated Predictor Autocorrelation: (A3) Location Effect True Effect: (Alternative) $\beta_1 = 1$

	Coef. Est.	Rejection	CI
	Mean	Rate	Coverage
Target Values	1	Large	0.95
OLS	1.016	0.679	0.689
SCR W1	1.023	0.738	0.603
SCR W2	1.033	0.721	0.605
SCR W3	1.030	0.729	0.592
OLS + Loc	1.022	0.814	0.820

Comparison of Coefficient Estimates

-1 0

1 2 3

SCR Weight Matrix 1 β₁

2 3

SCR Weight Matrix 1 $\hat{\beta}_1$

	0	1	2
n_{K1}	397	579	24
n_{K2}	545	450	5
n_{K3}	447	541	12

Comparison of p-values

0.4

SCR Weight Matrix 1 p₁

0.8

0.0 0.4

SCR Weight Matrix 2 p₁

SCR Weight Matrix 1 $\hat{\beta}_1$ SCR Weight Matrix $2 \, \hat{\beta}_1$ SCR Weight Matrix $3 \, \hat{\beta}_1$ SCR Weight Matrix 1 p₁ SCR Weight Matrix 2 p₁ -1 0 2 3 -1 0 1 2 3 0 1 2 3 0.0 0.4 0.8 0.4 8.0 0.0 0.4 0.8 OLS $\hat{\beta}_1$ OLS $\hat{\beta}_1$ OLS β̂₁ OLS p₁ OLS p₁ OLS p₁ SCR Weight Matrix $2 \, \hat{\beta}_1$ SCR Weight Matrix $3 \hat{\beta}_1$ SCR Weight Matrix $3 \, \hat{\beta}_1$ SCR Weight Matrix 2 p₁ SCR Weight Matrix 3 p₁

0.0

0.4

SCR Weight Matrix 1 p₁

0.8

-1 0 1 2 3

SCR Weight Matrix 2 $\hat{\beta}_1$