
 

Appendix B: Detailed description of model selection, parameterization, and posterior 

parameter estimates.  

Model Selection and Parameterization 

Hierarchical Bayesian disease and survival models were fit independently in JAGS (Plummer 

2003) in the R statistical programming environment (R Development Core Team 2010) using the 

rjags and coda packages. For both disease and survival models, model selection using 

indicator variables (Kuo and Mallick 1998), but no plot-level random effects, was carried out 

using 300000 iterations, discarding the initial 100000 iterations as burnin. Gibbs samplers used 

the glm module of the rjags package to improve fitting. As an example, consider the model 

for disease incidence with no random effects. The effect of covariate m on disease incidence 

depends on both the regression parameters βm and indicator variables Im, where Im = 1 indicates 

inclusion of covariate m and Im = 0 indicates otherwise. Therefore, β = [β0I0, …, βmIm, …, βM-

1IM-1] so that element m of β equals 0 when Im = 0 and βm when Im = 1. The indicator variable 

was modeled as a Bernoulli process Im ~ Bernoulli(π), where π is the probability of including 

any given parameter m in the model.  

 Bayesian model selection often relies on the posterior probability of models (Hoeting et 

al. 1999) or the marginal probabilities of individual parameter inclusion (O'Hara and Sillanpää 

2009), each of which have advantages and disadvantages. For example, median probability 

models (i.e., the model including all parameters with marginal probability of inclusion πk > 0.5) 

perform better in terms of prediction than the individual model with the highest posterior 

predictive probability (Barbieri and Berger 2004). Given that the large number of models being 

considered in this analysis (i.e., 2[number of main, quadratic, and interaction = 34] = 2.25×1015) would require 
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impractically large MCMC simulations to fully explore posterior model probabilities, we report 

the median probability model for predicting disease incidence responses to covariates. 

 The marginal probability of inclusion for each parameter was then calculated by taking 

the mean of each indicator variable for thinned series of predictions (every 40th iteration out of 

200000 Gibbs steps). Next, model fitting was carried out using the median probability model and 

plot-level random effects. In both cases, priors for regression parameters were taken to be weak, 

such as β ~ N(0,1000). For model selection, the prior for the probability of parameter inclusion π 

was Beta(2, 8). For the model fitting, the prior probability for the variance (τ2 and ω2) in the plot-

level random effects was Gamma-1(0.1, 0.1).  

Posterior Parameter Estimates 

Parameter estimates, model predictions, and all other inference outside of model selection were 

based on the fitting of the median probability model. Following model selection and the fitting of 

the median probability model, the first 40000 iterations of the Gibbs sampler were discarded and 

2000 iterations of the remaining 40000 steps were randomly selected for disease and mortality 

models. Mean posterior parameter estimates along with 68% and 95% credible intervals were 

calculated for the effects of covariates on the probability of observing disease in aspen trees 

(Table B1), the probability of aspen mortality for undiseased, or healthy, trees (Table B2), and 

the probability of aspen mortality for diseased trees (Table B3). 68% and 95% credible intervals 

for the random effects for each plot were calculated similarly to provide evidence concerning 

which plots exhibited higher or lower disease or mortality rates than would otherwise be 

expected (Fig. B2). The fact that many plots exhibited non-zero random effects for the disease 

(43%) and the mortality (35%) models supported the incorporation of random effects to account 

for variation not otherwise explained by the covariates. 
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TABLE B1. Mean parameter estimates for the disease incidence model with 68% and 95% 

credible intervals are provided for effects most often incorporated in the model (πk > 0.5; Table 

2). 

 Covariate Parameter Estimate (β k | Ik = 1) 
mean 68% interval 95% interval 

M
ai

n 
 

E
ff

ec
ts

 

intercept -0.59 (-1.35, 0.17) (-2.07, 0.91) 
dijk  1.62 (1.08, 2.15) (0.57, 2.67) 
sijk  -2.12 (-2.61, -1.64) (-3.04, -1.19) 
cijk 0.18 (-0.15, 0.52) (-0.46, 0.79) 
bjk -0.25 (-0.46, -0.04) (-0.67, 0.18) 
rjk -0.01 (-0.68, 0.65) (-1.30, 1.29) 
Tk 0.67 (0.00, 1.32) (-0.60, 1.92) 
Pk -2.10 (-2.84, -1.37) (-3.60, -0.65) 
tk 0.02 (-0.58, 0.61) (-1.19, 1.16) 
pk -0.16 (-0.90, 0.57) (-1.63, 1.34) 

Q
ua

dr
at

ic
 

E
ff
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ts

 

d ijk dijk 0.91 (-0.87, 2.66) (-2.55, 4.58) 
sijk×sijk 2.17 (-0.05, 4.34) (-2.10, 6.53) 
rjk×rjk -1.09 (-3.18, 0.97) (-5.05, 3.09) 
Tk×Tk -5.40 (-8.16, -2.54) (-11.19, -0.18) 
Pk×Pk 6.15 (3.74, 8.55) (1.59, 10.83) 
tk×tk 3.63 (1.38, 5.77) (-0.86, 8.10) 
pk×pk 0.92 (-2.01, 3.89) (-5.40, 6.89) 

In
te

ra
ct

io
n 

 
E

ff
ec
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sijk×rjk -4.23 (-6.91, -1.61) (-9.64, 1.13) 
sijk×Tk 5.30 (2.37, 8.23) (-0.33, 10.87) 
sijk×Pk 6.34 (3.74, 8.89) (1.32, 11.33) 
sijk×tk 0.52 (-2.03, 3.02) (-4.42, 5.42) 
sijk×pk 1.26 (-1.81, 4.11) (-4.26, 7.17) 
dijk×sijk 0.56 (-3.17, 4.28) (-6.68, 8.08) 
dijk×rjk 1.64 (-1.09, 4.37) (-3.94, 7.00) 
dijk×Tk 2.95 (0.26, 5.66) (-2.39, 8.30) 
dijk×Pk 4.48 (2.19, 6.81) (0.03, 9.13) 
dijk×tk -1.64 (-3.91, 0.67) (-5.91, 2.77) 
dijk×pk -0.45 (-3.03, 2.17) (-5.39, 4.72) 
cijk×rjk 2.10 (0.04, 4.17) (-1.90, 6.31) 
cijk×Tk 6.27 (4.06, 8.59) (1.56, 10.80) 
rjk×Tk -7.83 (-11.14, -4.39) (-14.79, -1.09) 
rjk×Pk 5.14 (1.93, 8.33) (-1.45, 11.37) 
rjk×tk -3.46 (-6.31, -0.65) (-9.42, 2.03) 
rjk×pk -0.81 (-4.28, 2.58) (-7.67, 6.14) 
Tk×Pk 3.48 (0.85, 5.99) (-1.60, 8.31) 
Tk×tk -3.56 (-6.87, -0.30) (-10.28, 2.99) 
Pk×pk 2.69 (-1.32, 6.69) (-5.62, 10.65) 
tk×pk -2.33 (-6.40, 1.61) (-9.68, 5.71) 
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TABLE B2. Mean parameter estimates for the diseased tree survival model with 68% and 95% 
credible intervals are provided for effects most often incorporated in the model (πk > 0.5; Table 
2).  

 Covariate Parameter Estimate (βk | Ik = 1) 
mean 68% interval 95% interval 

M
ai

n 
 

E
ff

ec
ts

 

Intercept -4.20 (-4.94, -3.45) (-5.64, -2.79) 
dijk  -4.89 (-5.43, -4.34) (-5.98, -3.81) 
sijk  -1.93 (-2.37, -1.48) (-2.86, -1.04) 
cijk 2.32 (1.90, 2.74) (1.50, 3.16) 
bjk -0.11 (-0.38, 0.16) (-0.61, 0.41) 
rjk 0.09 (-0.35, 0.56) (-0.78, 0.95) 
Tk 2.60 (2.15, 3.08) (1.63, 3.51) 
Pk 1.21 (0.64, 1.76) (0.08, 2.30) 
tk 0.13 (-0.31, 0.58) (-0.82, 0.99) 
pk -0.85 (-1.34, -0.36) (-1.81, 0.11) 

Q
ua

dr
at

ic
 

E
ff
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dijk dijk 0.68 (-1.53, 2.86) (-3.81, 5.17) 
sijk×sijk 5.36 (3.76, 6.92) (2.34, 8.39) 
cijk×cijk -2.65 (-4.12, -1.22) (-5.46, 0.16) 
bjk×bjk -0.21 (-0.87, 0.47) (-1.50, 1.08) 
rjk×rjk 1.93 (0.66, 3.18) (-0.59, 4.46) 
Pk×Pk -5.19 (-7.02, -3.33) (-8.92, -1.52) 
tk×tk 1.08 (-0.53, 2.70) (-2.32, 4.28) 

In
te

ra
ct

io
n 

 
E
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sijk×rjk 0.06 (-1.89, 2.02) (-3.76, 3.74) 
sijk×Tk 0.10 (-1.92, 2.13) (-3.85, 3.86) 
sijk×Pk 2.16 (0.13, 4.25) (-2.15, 6.45) 
sijk×tk 4.40 (2.15, 6.68) (-0.05, 8.87) 
sijk×pk -1.13 (-3.89, 1.75) (-6.52, 4.44) 
dijk×sijk -5.40 (-9.17, -1.68) (-13.02, 1.76) 
dijk×cijk -12.10 (-14.97, -9.17) (-17.55, -6.26) 
dijk×rjk 5.47 (2.73, 8.04) (0.32, 10.70) 
dijk×Pk 0.09 (-2.24, 2.49) (-4.59, 4.75) 
dijk×tk -3.19 (-5.78, -0.52) (-8.31, 1.91) 
dijk×pk -11.90 (-15.20, -8.58) (-18.13, -5.60) 
cijk×bjk 2.52 (1.57, 3.53) (0.68, 4.40) 
cijk×tk -5.07 (-6.84, -3.25) (-8.52, -1.43) 
cijk×pk -5.65 (-8.28, -3.11) (-10.66, -0.67) 
rjk×Tk -4.27 (-6.65, -1.97) (-9.12, -0.01) 
rjk×pk -1.05 (-4.18, 2.02) (-7.13, 5.18) 
Tk×Pk -5.61 (-7.71, -3.44) (-9.72, -1.41) 
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TABLE B3. Mean parameter estimates for the healthy tree survival model with 68% and 95% 

credible intervals are provided for effects most often incorporated in the model (πk > 0.5; Table 

2). 

 Covariate Parameter Estimate (βk | Ik = 1) 
mean 68% interval 95% interval 

M
ai

n 
 

E
ff

ec
ts

 Intercept -3.43 (-3.80, -3.05) (-4.24, -2.66) 
dijk  -2.91 (-3.34, -2.48) (-3.75, -1.99) 
bjk -0.40 (-0.63, -0.17) (-0.83, 0.04) 
Tk 1.48 (0.94, 2.01) (0.43, 2.54) 
Pk 0.31 (-0.10, 0.72) (-0.51, 1.14) 

In
te

ra
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io
n 

 
E
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Tk×Pk -4.05 (-5.83, -2.24) (-7.72, -0.44) 
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FIG. B1. Disease prevalence as a function of interacting covariates where yellow indicates high 

and red indicates low predicted probabilities of disease. White regions represent covariate space 

for which there were no plots. For each panel, all variables except for the two variables of 

interest were held constant at the mean observed values. See table 1 for definitions of variables. 
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FIG. B2. Plot-level random effects on disease (upper; αk) and mortality (lower; -γk) showing that 

plots exhibit strong negative (4.9% and 3.5%, respectively), moderate negative (12.8% and 

11.3%, respectively), moderate positive (16.0% and 14.9%, respectively), and strong positive 

(9.6% and 5.7%, respectively) plot-level random effects for disease and mortality, respectively. 

Strong effects were classified as those where the 95% credible interval for the plot effect did not 

include zero and moderate effects were classified as those where the 95% credible interval 

included zero, but the 68% credible interval did not. Within each panel, plots are sorted in 

ascending mean plot random effect order. 
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