A Notions of space use and their estimators

Here we describe how the two most common notions of space use answer different biological
questions and have different appropriate estimators, even though they have been often con-
flated in the literature. On the one hand there is Burt’s notion of the “home range” ( ,

)E

that area traversed by the individual in its normal activities of food gathering,
mating, and caring for young. Occasional sallies outside the area, perhaps ex-
ploratory in nature, should not be considered as in part of the home range.

This concept is, in spirit, estimated by kernel-density estimation (KDE), minimum convex
polygon (MCP), and mechanistic home-range analysis (MHRA) when the data are inde-
pendently sampled, and by autocorrelated Gaussian density estimation (AGDE) when the
process is Gaussian. The estimation target of all of these techniques is the range distribu-
tion, which addresses the long-term area requirements of an animal, assuming its movement
behaviors do not significantly change, and the estimated quantity is independent of the
sampling schedule, allowing it to be meaningfully compared across individuals.

On the other hand, the question of where the animal was located during the observation
period is addressed by the occurrence distribution. The occurrence distribution is estimated
by the Brownian bridge density estimator (BBDE) when the animal movement is Brownian,
as we will discuss. This latter distribution is explicitly sampling dependent, cannot be
compared across individuals, and is not generally related to Burt’s home range. Instead,
the occurrence distribution is more appropriate than the range distribution when the goal
is to correlate space use with environmental covariates, such as for analyses like

( ) and ( ). In other words, these two distributions and their
respective estimators, though often conflated in the literature, answer different biological
questions. The criticism leveled by ( )—are traditional estimators relevant

given high quality data?—only pertains to estimating occurrence. We therefore strongly
recommend that ecologists carefully determine what biological questions they wish to answer,
what properties their data exhibit (e.g., with variogram analysis , ), and
what estimator is appropriate. An overview of each space-use estimator’s applicability is
given in table A.1.

A.1 Kernel-density estimation

As we prove in App. B.4, the conventional kernel-density estimate collapses to the movement
path in the limit of continuously sampled data even though it estimates the home range in
the limit of uncorrelated data. From this fact, one might be inclined to conclude that
the conventional KDE estimates both home range and occurrence, even though this is not
logically possible. However, in contrast with BBDE, conventional KDE does not estimate
occurrence correctly for any finite amount of data. The way that the occurrence estimator
fills in the gaps should depend on the movement process, because the movement process
imparts a distribution of interpolated locations. KDE is generally incorrect for this purpose
because it can only take this limit in one way, regardless of the animal’s movement, while
BBDE fills gaps between the sampled locations differently for different diffusion coefficients.



Estimator Target Assumptions
KDE range’ 11D
MCP range 11D
MHRA range 1D /Markovian*
AGDE range normal
AKDE range none
BBDE | occurrence Brownian

Table A.1: An overview of the data requirements and applicability of different space-use
estimators. Both KDE and MCP assume IID data and will return underestimated home-
range areas with short samples of location data. BBDE assumes Brownian motion, which
requires the data to be sampled coarsely enough that velocities appear uncorrelated. 7:
While KDE does collapse to the movement path for continuously sampled data, it does not
correctly estimate occurrence for finite amounts of data (App. A.1). I: MHRA can be fit
under the assumption of a Markov process, similar to BBDE, but many applications of this
approach assume [ID data (App. A.2).

A.2 Mechanistic home-range analysis

Mechanistic models of home-range formation provide parametric estimators with both mech-
anistic insight as to why animals move and increased statistical efficiency over non-parametric
estimators such as KDE and MCP. Mechanistic analysis was first popularized by the population-
level advection-diffusion equation approach of ( , ) and
( ), but now encompasses a broader range of approaches including individual-
based models ( , ) and step-selection functions ( , :
, : , ). As we discuss below, the traditional—and still
used ( , : , )—statistical estimation methods assume inde-
pendently sampled data because they employ marginal likelihoods, while the step-selection
function approach can account for Markov-process autocorrelations in the data. However, no
mechanistic approach can currently account for non-Markovian-process autocorrelations in
the data, though we describe how this could be accomplished in future efforts. Accounting
for the appropriate degree (or lack) of autocorrelation—independent, Markovian, or non-
Markovian—is an important determination to make for a dataset. Animal movement data
are often highly autocorrelated, and these autocorrelations can persist over very long peri-
ods of time ( , : , : , : ,
: , ), ranging up to months and years. Therefore, it can require a
considerable degree of coarsening to make the data (approximately) independently sampled.
In somewhat less coarsely sampled datasets (e.g., 1-2 day resolution in many ungulates),
Markovian process and estimation techniques are appropriate, as they can account for auto-
correlation between subsequent locations. However, moving animals must feature correlated
velocities on short time scales ( , : , ) both because the
degree to which animals can change their velocity in small increments of time is physically
limited (i.e., animals are not capable of infinite acceleration), and because animals frequently
tend to maintain similar velocities when displaying certain behaviors (e.g., commuting be-
tween foraging sites). When data are sampled finely enough to reveal velocity autocorrelation
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Figure A.1: Brownian-bridge home-range estimate for 2.5 years of Mongolian gazelle relo-
cations (red dots e) with 95% occurrence area (blue contours —). In this case the telemetry
errors were measured to be within 10-20 meters, whereas gazelles travel hundreds of kilo-
meters. Aside from the large gaps throughout the data, the gazelle’s location is fairly well
known and so the Brownian-bridge space-use estimate is even more spatially constrained and
fragmented than the conventional KDE.

(e.g., < 1 day resolution for many ungulates), as is increasingly the case with modern GPS
datasets (Johnson et al., 2008; Kuhn et al., 2009; Gurarie and Ovaskainen, 2011; Hanks
et al, 2011; Fleming et al., 20140), Markovian analyses are biased (Fleming et al., 20140)
and inefficient (Stein, 1988). Instead, non-Markovian methods (Johnson et al., 2008; Flem-
ing et al.,, 20140) must be employed to properly account for velocity autocorrelation and to
yield accurate estimates.

By construction, individual-based correlated random-walk models (Potts et al.; 2013),
step-selection functions (Fortin et al., 2005; Forester et al., 2009; Potts et al., 2014; Potts
, 20141) and redistribution kernels (Moorcroft and Barnett; 2008), can only be
fit to short-ranged Markovian autocorrelations in the data, as only for a Markov process
can the joint likelihood function of the time-series record be decomposed into a product
of transitional probabilities, which these methods rely upon for their model fitting. Less
clear, however, is that this is also the case when working with partial differential (Fokker—
Planck) equations for the population densities rather than stochastic differential (Langevin)
equations for the trajectories. To avoid any possible confusion stemming from the non-
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Markovian density-density interactions in MHRA, let us simply consider the dynamics of

one individual, whereupon the MHRA advection-diffusion equations do not depend on past

values of the individual’s density function. The question of interest is how to construct a joint

(multi-time) likelihood function appropriate for autocorrelated location data. With Langevin

equations this is straightforward, as the Langevin equations themselves provide a method

to simulate processes that fall from the joint probability distribution. However, as discussed

in ( ), Fokker—Planck equations do not provide a framework to calculate
multi-time correlations or multi-time probabilities unless the dynamics are Markovian.

Though MHRA has greatly evolved since its inception ( , ; ,

), the statistical methods behind the traditional MHRA remain in use as recently as

( ). The traditional MHRA fitting method proceeds by numerically

solving for steady states pss(r|@) as a function of the animal location r and model parameters

0, and then maximizing the likelihood function

L(Blr(t1),--- ,x(tn)) = ‘Hpss(r(tz’)w)' (A1)

However, note that this explicitly assumes that the data are independently sampled because
for autocorrelated data the joint (multi-time) probability distribution is not given by the
product of its marginal distributions.

p(r(tr), -+ x(tn)[0) # Hp(r(tz)IO)- (A.2)

This assumption of independent data is still made in the recent non-stationary analyses of
( ) and ( ), and so this remains a relevant issue even
though these papers excel at capturing the transient dynamics of multi-individual home-
range formation. The only exception to this standard, marginal likelihood approach of
which we are aware is the redistribution-kernel method of ( ) and
its related step-selection function method ( , ; , ), which
are fit to data with the transition probabilities from one time to the next. In this way, the
autocorrelation of first-order Markov processes can correctly be taken into account.

All of the above issues could potentially be resolved to produce mechanistic analyses
suitable for data featuring multi-scale, non-Markovian-process autocorrelations, which would
provide parametric home-range estimators capable of outperforming AKDE. First, for rea-
sons discussed, modeling efforts need to be based upon mathematical formalisms, such as
Langevin equations, that are capable of generating and describing strong multi-scale and
multi-time autocorrelation among observations, such as in ( ) and

( ). Second, the full joint likelihood function ( : ;
, ) of the time series must be employed rather than fitting with products of
marginal distributions or transition probabilities. For this task, fitting methods such as
those employed by ( ) could be used.

A.3 Brownian-bridge density estimation

In Fig. A.1, we plot the Brownian-bridge estimate ( : ) of a long Mongolian
gazelle track. As previously noted, the BBDE does not estimate the range distribution and
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thus is not a home-range estimator. In the case of home-range estimates obtained through
KDE, AGDE, and MHRA approaches, the home-range area corresponds to a confidence re-
gion of the location variable’s probability distribution for all realizations of the movement
process (i.e., the range distribution). In contrast, the BBDE estimates the occurrence dis-
tribution, which corresponds to the location variable’s probability distribution during the
observed timespan, conditioned upon the data. In other words, the occurrence distribution
estimated by BBDE only addresses the question of where the specific animal was located
during the observation period. Other plausible realizations of the underlying movement pro-
cess are excluded. The area estimated by the BBDE is not an estimate of the animal’s home
range, but instead a reflection of our ignorance as to where the animal was located. If the
telemetry errors are small and the sampling interval is short, then the animal’s location is
well known for the observed timespan. As a result, the BBDE becomes singularly defined
upon the observed movement path, estimating a vanishing area for any confidence region,
as is particularly apparent in Fig. A.1.
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