Ecological Archives E096-038-A1
Lee A. Fuiman, Tara L. Connelly, Susan K. Lowerre-Barbieri, and James W. McClelland. 2015. Egg boons: central components of marine fatty acid food webs. Ecology 96:362–372. http://dx.doi.org/10.1890/14-0571.1
Appendi × A. The data, data sources, and details of the methods used in the meta-analyses of fatty acid content, egg production, and egg mortality rates.
Fatty Acid Content
We conducted a meta-analysis of fatty acid content (mg ind-1) in marine organisms by assembling a data set from published values, supplemented with unpublished data provided by colleagues and our own measurements. Data that were included for animals were selected because they were representative of wild (not captive) samples. Data included for single celled organisms (phytoplankton and microzooplankton) were from cultures. When literature values were reported on a weight basis (e.g., mg g-1 dry mass), they were multiplied by body weight (from separate sources, if necessary) to obtain the content per individual for each of the three selected fatty acids (DHA, EPA, and ARA). Literature that reported individual fatty acids as a percentage of total fatty acids was not used. The final data set for fatty acid data content (Table A1) describes whole body content of DHA, EPA, and ARA for pelagic marine organisms, ranging from phytoplankton to fishes. A few records for demersal eggs of anadromous fishes were included for comparative purposes. In the data set, fatty acid content spanned 17 orders of magnitude for organisms that spanned 6 orders of magnitude in length, with fish eggs occupying the center of the size spectrum.
The fatty acid data set was used to generate empirical scaling relationships to determine whether EFA content of marine eggs was greater than that of other marine organisms of comparable size and how EFA content of marine eggs compares to that of other components of the marine food web. Length was used as the measure of organism size because of its demonstrated power for explaining processes ranging from physiological responses of individuals, to vital rates of populations, and trophic interactions (Miller et al. 1988, Andersen and Beyer 2006, Shin et al. 2010). Scaling relationships were obtained by fitting a log-transformed power function (log10 Y = a + b log10 X, where Y is whole-body fatty acid content, in mg individual-1 and X is organism length, in cm). These regressions excluded data for organisms bearing yolk or oil globules (eggs and yolked larvae). Regression statistics for the scaling relationships for the three essential fatty acids are shown in Table A2.
Fish egg production and mortality
Plankton surveys conducted in fish spawning areas worldwide are used to estimate the total number of eggs produced by fish populations and, from that, the size of spawning populations using approaches such as the daily egg production method, the annual egg production method, and the fecundity reduction method. These studies yield quantitative estimates of daily or annual egg production by a species within a geographic area, primarily for abundant, small bodied forage species, such as anchovies and sardines, but also larger, commercially exploited species, such as cod, plaice, and mackerel. In cases where an individual publication reported egg production for a single population over multiple years, a mean value was calculated for all years. When an individual publication reported egg production for multiple subregions, total egg production for all subregions was calculated.
Egg mortality rate is an important component of the calculations and it is also quantified from the plankton survey data as the decline in abundance of eggs with time. Egg mortality rate is most often expressed as a daily rate (Z, in units of d-1) or cumulative mortality rate over the entire egg stage (fertilization to hatching). In cases where an individual publication reported mortality rates for a single population over multiple years or for multiple subregions, a mean mortality rate was calculated for all years or all regions.
Raw data for egg production and egg mortality rates of fish populations are provided in Table A3. The summary of these data (Fig. 2) demonstrates the superabundance of eggs produced by pelagic spawners. Median egg production by individual fish populations is commonly about 1012 eggs per day and 1013 eggs per year. Median egg mortality rate is 33% per day and about 88% between fertilization and hatching.
Table A1. Whole-body content of three essential fatty acids in marine organisms derived from published values or original data.
|
|
|
|
Fatty acid content (mg ind-1) |
|
||
Group |
Taxon |
Species |
Size cm |
DHA |
EPA |
ARA |
Source |
Stages bearing yolk or oil globules |
|||||||
zooplankton eggs |
Copepoda |
Calanus finmarchicus |
1.47 × 10-02 |
3.50 × 10-06 |
4.50 × 10-06 |
Mayor et al. 2009a |
|
Calanus helgolandicus |
9.00 × 10-03 |
1.02 × 10-05 |
8.90 × 10-06 |
2.00 × 10-07 |
Pond et al. 1996 |
||
macrocrustacean larvae |
Decapoda |
Paralithodes platypus |
1.37 × 10-01 |
9.40 × 10-04 |
1.46 × 10-03 |
1.40 × 10-04 |
Copeman et al. 2014 |
fish eggs |
Osteichthyes |
Centropomis undecimalis |
7.50 × 10-02 |
4.23 × 10-04 |
9.96 × 10-05 |
1.77 × 10-04 |
M. Resley and K. Main unpublished data |
7.50 × 10-02 |
5.53 × 10-04 |
8.82 × 10-05 |
2.09 × 10-04 |
M. Resley and K. Main unpublished data |
|||
Gadus macrocephalus |
1.00 × 10-01 |
1.69 × 10-03 |
1.12 × 10-03 |
1.40 × 10-04 |
Laurel et al. 2010 |
||
Gadus morhua |
1.40 × 10-01 |
2.48 × 10-03 |
1.40 × 10-03 |
2.70 × 10-04 |
Salze et al. 2005, Ouellet 2001 |
||
1.50 × 10-01 |
2.44 × 10-03 |
1.38 × 10-03 |
1.80 × 10-04 |
Laurel et al. 2010 |
|||
Morone saxatilis |
1.18 × 10-01 |
1.64 × 10-02 |
1.02 × 10-02 |
1.47 × 10-03 |
Harrell and Woods 1995 |
||
Oncorhynchus tschawytscha |
7.08 × 10-01 |
7.30 × 10+00 |
5.85 × 10+00 |
4.91 × 10-01 |
Ashton et al. 1993 |
||
7.74 × 10-01 |
7.49 × 10+00 |
6.33 × 10+00 |
4.29 × 10-01 |
Ashton et al. 1993 |
|||
Sarda sarda |
9.40 × 10-02 |
1.61 × 10-03 |
5.93 × 10-04 |
7.77 × 10-05 |
Ortega and Mourente 2010 |
||
Sciaenops ocellatus |
9.50 × 10-02 |
8.68 × 10-04 |
3.12 × 10-04 |
2.64 × 10-04 |
L.A. Fuiman unpublished data |
||
Scophthalmus maximus |
1.09 × 10-01 |
1.54 × 10-03 |
5.04 × 10-04 |
1.94 × 10-04 |
Silversand et al. 1996 |
||
Solea solea |
1.30 × 10-01 |
2.45 × 10-03 |
3.58 × 10-04 |
2.41 × 10-04 |
Lund et al. 2008 |
||
Thunnus thynnus |
9.80 × 10-02 |
2.93 × 10-03 |
7.87 × 10-04 |
1.59 × 10-04 |
Ortega and Mourente 2010 |
||
Trachinotus carolinus |
9.90 × 10-02 |
1.18 × 10-03 |
1.98 × 10-04 |
2.25 × 10-04 |
M. Resley and K. Main unpublished data |
||
Stages lacking yolk and oil globules |
|||||||
phytoplankton |
Bacillariophyceae |
Asterionella glacialis |
7.00 × 10-03 |
1.36 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
Chaetoceros affinis |
2.00 × 10-03 |
1.07 × 10-11 |
6.42 × 10-11 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Chaetoceros calcitrans |
2.12 × 10-04 |
5.92 × 10-12 |
8.21 × 10-11 |
4.22 × 10-11 |
Volkman et al. 1989 |
||
Chaetoceros gracilis |
4.17 × 10-04 |
8.05 × 10-12 |
1.15 × 10-10 |
1.23 × 10-10 |
Volkman et al. 1989 |
||
Nitzschia closterium |
4.80 × 10-04 |
2.45 × 10-10 |
3.35 × 10-10 |
1.81 × 10-10 |
Viso and Marty 1993 |
||
Phaeodactylum tricornutum |
3.00 × 10-04 |
2.56 × 10-11 |
4.00 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Skeletonema costatum |
6.65 × 10-04 |
3.00 × 10-11 |
9.00 × 10-11 |
0.00 × 10+00 |
Volkman et al. 1989 |
||
Thallasiosira pseudonana |
3.94 × 10-04 |
3.90 × 10-11 |
1.93 × 10-10 |
3.00 × 10-12 |
Volkman et al. 1989 |
||
Thallasiosira weissflogii |
1.22 × 10-03 |
8.20 × 10-13 |
4.80 × 10-12 |
0.00 × 10+00 |
Chen et al. 2012 |
||
1.50 × 10-03 |
1.00 × 10-11 |
3.80 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
|||
Chlorophyceae |
Dunaliella bioculata |
6.70 × 10-04 |
0.00 × 10+00 |
0.00 × 10+00 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
Dunaliella minuta |
7.70 × 10-04 |
0.00 × 10+00 |
0.00 × 10+00 |
1.53 × 10-11 |
Viso and Marty 1993 |
||
Dunaliella primolecta |
8.70 × 10-04 |
0.00 × 10+00 |
0.00 × 10+00 |
4.81 × 10-11 |
Viso and Marty 1993 |
||
Dunaliella sp. |
6.70 × 10-04 |
0.00 × 10+00 |
0.00 × 10+00 |
0.00 × 10+00 |
Chen et al. 2012 |
||
Dunaliella tertiolecta |
3.81 × 10-04 |
0.00 × 10+00 |
0.00 × 10+00 |
0.00 × 10+00 |
Volkman et al. 1989 |
||
Nannochloris atomus |
4.78 × 10-04 |
4.00 × 10-14 |
1.31 × 10-11 |
2.05 × 10-12 |
Volkman et al. 1989 |
||
Nannochloris sp. |
2.00 × 10-04 |
0.00 × 10+00 |
0.00 × 10+00 |
2.20 × 10-10 |
Viso and Marty 1993 |
||
Cryptophyceae |
Chroomonas fragarioides |
9.00 × 10-04 |
4.46 × 10-10 |
9.12 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
Chroomonas salina |
8.66 × 10-04 |
4.36 × 10-10 |
9.12 × 10-10 |
7.60 × 10-11 |
Volkman et al. 1989 |
||
Rhodomonas baltica |
1.00 × 10-03 |
1.87 × 10-10 |
1.87 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Rhodomonas sp. |
7.10 × 10-04 |
3.90 × 10-13 |
8.10 × 10-13 |
4.00 × 10-14 |
Chen et al. 2012 |
||
Dinophyceae |
Amphidinium sp. |
2.00 × 10-03 |
2.61 × 10-09 |
1.20 × 10-09 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
Procentrum micans |
6.00 × 10-03 |
3.06 × 10-09 |
1.09 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Prorocentrum dentatum |
1.21 × 10-03 |
7.41 × 10-12 |
5.90 × 10-13 |
0.00 × 10+00 |
Chen et al. 2012 |
||
Scrippsiella trochoidea |
2.50 × 10-03 |
7.88 × 10-09 |
1.88 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Prasinophyceae |
Tetraselmis marina |
1.20 × 10-03 |
5.39 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Tetraselmis suecica |
4.15 × 10-04 |
2.64 × 10-11 |
1.39 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
1.07 × 10-03 |
3.60 × 10-13 |
1.73 × 10-10 |
6.48 × 10-11 |
Volkman et al. 1989 |
|||
Prymnesiophyceae |
Chrysotila lamellosa |
4.50 × 10-04 |
1.00 × 10-11 |
6.00 × 10-12 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
Chrysotila stipitata |
7.78 × 10-04 |
4.50 × 10-12 |
0.00 × 10+00 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Emiliania huxleyi |
7.00 × 10-04 |
1.38 × 10-10 |
0.00 × 10+00 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Hymenomonas elongata |
6.25 × 10-04 |
6.00 × 10-11 |
6.50 × 10-11 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Isochrysis sp. |
4.60 × 10-04 |
9.96 × 10-11 |
2.40 × 10-12 |
0.00 × 10+00 |
Volkman et al. 1989 |
||
Pavlova lutheri |
5.58 × 10-04 |
3.01 × 10-10 |
6.30 × 10-10 |
3.20 × 10-13 |
Volkman et al. 1989 |
||
Pavlova pinguis |
4.50 × 10-04 |
5.20 × 10-12 |
8.06 × 10-11 |
0.00 × 10+00 |
Viso and Marty 1993 |
||
Raphidophyceae |
Heterosigma akashiwo |
2.60 × 10-03 |
3.84 × 10-10 |
4.60 × 10-09 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
Rhodophyceae |
Porphyridium cruentum |
7.00 × 10-04 |
0.00 × 10+00 |
2.66 × 10-10 |
7.97 × 10-10 |
Viso and Marty 1993 |
|
Xanthophyceae |
Heterothrix sp. |
9.00 × 10-04 |
7.10 × 10-12 |
2.91 × 10-10 |
0.00 × 10+00 |
Viso and Marty 1993 |
|
microzooplankton |
Ciliata |
Strombidium sulcatum |
2.48 × 10-03 |
0.00 × 10+00 |
0.00 × 10+00 |
0.00 × 10+00 |
Chen et al. 2012 |
Uronema sp. |
1.20 × 10-03 |
7.12 × 10-10 |
6.71 × 10-10 |
2.33 × 10-10 |
Chu et al. 2009 |
||
Dinophyceae |
Luciella mosanensis |
1.26 × 10-03 |
4.45 × 10-10 |
2.88 × 10-11 |
0.00 × 10+00 |
Chu et al. 2009 |
|
Pfiesteria piscicida |
3.00 × 10-03 |
2.86 × 10-09 |
2.17 × 10-10 |
0.00 × 10+00 |
Chu et al. 2009 |
||
zooplankton |
Cladocera |
Evadne nordmanni |
1.00 × 10-01 |
8.31 × 10-05 |
8.64 × 10-05 |
2.70 × 10-06 |
Tiselius et al. 2012 |
1.00 × 10-01 |
7.00 × 10-05 |
1.10 × 10-04 |
0.00 × 10+00 |
Gonçalves et al. 2012 |
|||
Podon sp. |
6.00 × 10-02 |
7.65 × 10-05 |
1.12 × 10-04 |
3.30 × 10-06 |
Tiselius et al. 2012 |
||
Copepoda |
Acartia clausi |
1.20 × 10-01 |
1.78 × 10-04 |
6.88 × 10-05 |
2.40 × 10-06 |
Tiselius et al. 2012 |
|
1.20 × 10-01 |
6.00 × 10-05 |
6.00 × 10-05 |
0.00 × 10+00 |
Gonçalves et al. 2012 |
|||
Acartia tonsa |
1.50 × 10-01 |
5.10 × 10-04 |
5.10 × 10-04 |
3.00 × 10-05 |
Gonçalves et al. 2012 |
||
1.50 × 10-01 |
6.25 × 10-03 |
1.30 × 10-02 |
0.00 × 10+00 |
Hazzard and Kleppel 2003 |
|||
Calanus finmarchicus |
3.00 × 10-01 |
1.30 × 10-03 |
1.05 × 10-03 |
Mayor et al. 2009b |
|||
Calanus helgolandicus |
3.20 × 10-01 |
2.12 × 10-03 |
1.40 × 10-03 |
4.50 × 10-05 |
Tiselius et al. 2012 |
||
Centropages hamatus |
1.30 × 10-01 |
4.00 × 10-04 |
1.23 × 10-04 |
2.80 × 10-06 |
Tiselius et al. 2012 |
||
Centropages typicus |
1.80 × 10-01 |
7.29 × 10-04 |
1.94 × 10-04 |
5.20 × 10-06 |
Tiselius et al. 2012 |
||
1.80 × 10-01 |
3.63 × 10-03 |
2.14 × 10-03 |
0.00 × 10+00 |
Gonçalves et al. 2012 |
|||
Eurytemora velox |
1.20 × 10-01 |
1.10 × 10-04 |
8.00 × 10-05 |
0.00 × 10+00 |
Gonçalves et al. 2012 |
||
Paracalanus parvus |
1.00 × 10-01 |
1.46 × 10-04 |
4.92 × 10-05 |
1.80 × 10-06 |
Tiselius et al. 2012 |
||
Pseudocalanus sp. |
2.10 × 10-01 |
2.94 × 10-04 |
3.55 × 10-04 |
3.90 × 10-06 |
Tiselius et al. 2012 |
||
Temora longicornis |
1.50 × 10-01 |
2.92 × 10-04 |
1.28 × 10-04 |
3.60 × 10-06 |
Tiselius et al. 2012 |
||
1.50 × 10-01 |
1.60 × 10-04 |
1.00 × 10-04 |
0.00 × 10+00 |
Gonçalves et al. 2012 |
|||
macrocrustaceans |
Decapoda |
Callinectes sapidus |
1.35 × 10+01 |
4.67 × 10+01 |
5.74 × 10+01 |
2.88 × 10+01 |
L.A. Fuiman unpublished data |
Callinectes sapidus ♀ |
1.35 × 10+01 |
2.02 × 10+01 |
2.53 × 10+01 |
1.48 × 10+01 |
L.A. Fuiman unpublished data |
||
Callinectes sapidus gravid ♀ |
1.35 × 10+01 |
7.02 × 10+01 |
6.68 × 10+01 |
2.92 × 10+01 |
L.A. Fuiman unpublished data |
||
Callinectes similis ♀ |
6.95 × 10+00 |
1.52 × 10+01 |
1.86 × 10+01 |
1.09 × 10+01 |
L.A. Fuiman unpublished data |
||
Callinectes similis ♂ |
4.04 × 10+00 |
2.48 × 10+00 |
4.14 × 10+00 |
1.12 × 10+00 |
L.A. Fuiman unpublished data |
||
Farfantepenaeus aztecus |
1.25 × 10+01 |
1.19 × 10+01 |
1.15 × 10+01 |
5.04 × 10+00 |
L.A. Fuiman unpublished data |
||
Litopenaeus setiferus |
1.25 × 10+01 |
9.89 × 10+00 |
1.33 × 10+01 |
7.10 × 10+00 |
L.A. Fuiman unpublished data |
||
Panulirus cygnus |
1.50 × 10+00 |
1.18 × 10-01 |
7.88 × 10-02 |
Saunders et al. 2012 |
|||
1.60 × 10+00 |
1.73 × 10-01 |
1.13 × 10-01 |
1.95 × 10-02 |
Wang 2013 |
|||
1.60 × 10+00 |
3.03 × 10-01 |
1.82 × 10-01 |
2.93 × 10-02 |
Wang 2013 |
|||
1.80 × 10+00 |
2.99 × 10-01 |
1.82 × 10-01 |
3.14 × 10-02 |
Wang 2013 |
|||
1.80 × 10+00 |
2.92 × 10-01 |
1.71 × 10-01 |
2.71 × 10-02 |
Wang 2013 |
|||
2.10 × 10+00 |
2.76 × 10-01 |
1.77 × 10-01 |
3.34 × 10-02 |
Wang 2013 |
|||
2.10 × 10+00 |
4.56 × 10-01 |
2.69 × 10-01 |
4.60 × 10-02 |
Wang 2013 |
|||
Euphausiacea |
Euphausia superba |
3.00 × 10+00 |
2.85 × 10+00 |
2.31 × 10+01 |
1.90 × 10+00 |
Cripps et al. 1999 |
|
3.64 × 10+00 |
3.37 × 10+00 |
3.08 × 10+01 |
1.60 × 10+00 |
Cripps et al. 1999 |
|||
4.16 × 10+00 |
7.12 × 10+00 |
5.38 × 10+01 |
2.73 × 10+00 |
Cripps et al. 1999 |
|||
cephalopods |
Octopoda |
Octopus vulgaris |
9.40 × 10-01 |
1.90 × 10-01 |
1.21 × 10-01 |
3.09 × 10-02 |
Navarro and Villanueva 2003 |
2.27 × 10+00 |
1.72 × 10+00 |
1.21 × 10+00 |
6.64 × 10-01 |
Navarro and Villanueva 2003 |
|||
3.07 × 10+00 |
3.30 × 10+00 |
2.38 × 10+00 |
8.20 × 10-01 |
Navarro and Villanueva 2003 |
|||
Teuthida |
Loligo opalescens |
2.38 × 10+01 |
1.44 × 10+02 |
6.55 × 10+01 |
7.30 × 10+00 |
L.A. Fuiman unpublished data |
|
fishes |
Osteichthyes |
Brevoortia patronus |
1.28 × 10+01 |
2.13 × 10+01 |
8.57 × 10+00 |
2.69 × 10+00 |
L.A. Fuiman unpublished data |
Champsocephalus gunnari |
3.12 × 10+01 |
4.77 × 10+02 |
7.35 × 10+02 |
4.01 × 10+01 |
Lea et al. 2002 |
||
Chloroscombrus chrysurus |
8.30 × 10+00 |
1.15 × 10+01 |
4.10 × 10+00 |
1.67 × 10+00 |
L.A. Fuiman unpublished data |
||
Electrona carlsbergi |
9.00 × 10+00 |
1.46 × 10+02 |
1.58 × 10+02 |
1.24 × 10+01 |
Lea et al. 2002 |
||
Electrona subaspera |
7.20 × 10+00 |
6.38 × 10+01 |
4.93 × 10+01 |
2.90 × 10+00 |
Lea et al. 2002 |
||
Gadus macrocephalus |
5.20 × 10-01 |
1.47 × 10-03 |
9.60 × 10-04 |
1.40 × 10-04 |
Laurel et al. 2010 |
||
Gadus morhua |
4.50 × 10-01 |
1.62 × 10-03 |
8.10 × 10-04 |
5.00 × 10-05 |
Laurel et al. 2010 |
||
Gymnoscopelus fraseri |
5.10 × 10+00 |
7.38 × 10+00 |
3.53 × 10+00 |
3.24 × 10-01 |
Lea et al. 2002 |
||
7.20 × 10+00 |
4.49 × 10+01 |
4.39 × 10+01 |
2.55 × 10+00 |
Lea et al. 2002 |
|||
Gymnoscopelus nicholsi |
1.23 × 10+01 |
2.33 × 10+02 |
2.83 × 10+02 |
1.69 × 10+01 |
Lea et al. 2002 |
||
Gymnoscopelus piabilis |
1.04 × 10+01 |
8.64 × 10+01 |
7.28 × 10+01 |
6.24 × 10+00 |
Lea et al. 2002 |
||
Harengula jaguana |
6.60 × 10+00 |
8.65 × 10+00 |
3.27 × 10+00 |
1.06 × 10+00 |
L.A. Fuiman unpublished data |
||
1.41 × 10+01 |
6.15 × 10+01 |
4.83 × 10+01 |
8.70 × 10+00 |
L.A. Fuiman unpublished data |
|||
Lagodon rhomboides |
1.04 × 10+01 |
1.80 × 10+01 |
9.76 × 10+00 |
1.39 × 10+01 |
L.A. Fuiman unpublished data |
||
Limanda ferruginea |
3.00 × 10-01 |
3.50 × 10-04 |
2.30 × 10-04 |
4.00 × 10-05 |
Copeman et al. 2002 |
||
Micropogonias undulatus |
1.46 × 10+01 |
5.52 × 10+01 |
4.68 × 10+01 |
3.70 × 10+01 |
L.A. Fuiman unpublished data |
||
Mugil cephalus |
2.58 × 10+01 |
4.01 × 10+02 |
8.09 × 10+02 |
1.46 × 10+02 |
L.A. Fuiman unpublished data |
||
Mugil curema |
1.28 × 10+01 |
4.13 × 10+01 |
9.16 × 10+01 |
2.66 × 10+01 |
L.A. Fuiman unpublished data |
||
Opisthonema oglinum |
7.50 × 10+00 |
7.58 × 10+00 |
2.44 × 10+00 |
6.80 × 10-01 |
L.A. Fuiman unpublished data |
||
1.77 × 10+01 |
1.94 × 10+02 |
5.64 × 10+01 |
3.13 × 10+01 |
L.A. Fuiman unpublished data |
|||
Orthopristis chrysoptera |
1.15 × 10+01 |
1.73 × 10+01 |
1.06 × 10+01 |
8.79 × 10+00 |
L.A. Fuiman unpublished data |
||
Protomyctophum tenisoni |
4.10 × 10+00 |
6.66 × 10+00 |
4.31 × 10+00 |
2.73 × 10-01 |
Lea et al. 2002 |
||
4.90 × 10+00 |
1.38 × 10+01 |
6.99 × 10+00 |
5.10 × 10-01 |
Lea et al. 2002 |
|||
Sardinella aurita |
1.97 × 10+01 |
1.91 × 10+02 |
6.63 × 10+01 |
2.81 × 10+01 |
L.A. Fuiman unpublished data |
||
Scomber scombrus |
3.19 × 10+01 |
2.28 × 10+03 |
7.36 × 10+02 |
4.04 × 10+02 |
L.A. Fuiman unpublished data |
||
Protomyctophum tenisoni |
4.10 × 10+00 |
6.66 × 10+00 |
4.31 × 10+00 |
2.73 × 10-01 |
Lea et al. 2002 |
||
4.90 × 10+00 |
1.38 × 10+01 |
6.99 × 10+00 |
5.10 × 10-01 |
Lea et al. 2002 |
|||
Sardinella aurita |
1.97 × 10+01 |
1.91 × 10+02 |
6.63 × 10+01 |
2.81 × 10+01 |
L.A. Fuiman unpublished data |
||
|
|
Scomber scombrus |
3.19 × 10+01 |
2.28 × 10+03 |
7.36 × 10+02 |
4.04 × 10+02 |
L.A. Fuiman unpublished data |
Table A2. Regression statistics for scaling relationships for three essential fatty acids. Data were fitted to a log-transformed power function (log10 Y = a + b log10 X, where Y is whole-body fatty acid content and X is organism length). Regressions use data in Table A1, e × cluding yolk-bearing stages (eggs and early larvae) of zooplankton and fishes and are depicted in Fig. 1.
Fatty acid |
a |
b |
95% confidence interval for b |
n |
Adjusted R² |
P |
DHA |
-1.29 |
2.84 |
2.76 – 2.91 |
91 |
0.985 |
< 0.001 |
EPA |
-1.37 |
2.76 |
2.67 – 2.86 |
94 |
0.974 |
< 0.001 |
ARA |
-2.05 |
2.66 |
2.52 – 2.75 |
67 |
0.970 |
< 0.001 |
Table A3. Egg production and egg mortality rate for fish populations with planktonic eggs. Egg production is the estimated number of eggs produced by the sampled population per day (daily) or per year (annual). Mortality rate is the instantaneous rate (Z) per day (daily) or from fertilization until hatching (cumulative).
Egg production |
Mortality rate |
||||||
Family |
Species |
Daily |
Annual |
Daily |
Cumulative |
Source |
|
Clupeidae |
Etrumeus sadina |
2.45 × 10+11 |
6.29 × 10+13 |
5.52 × 10-01 |
1.10 × 10+00 |
Houde 1977 |
|
Harengula jaguana |
2.98 × 10+11 |
4.87 × 10+13 |
2.60 × 10+00 |
2.10 × 10+00 |
Houde 1977 |
||
Opisthonema oglinum |
3.28 × 10+11 |
5.24 × 10+13 |
4.39 × 10-01 |
3.68 × 10-01 |
Houde 1977 |
||
Sardina pilchardus |
6.90 × 10+12 |
Bernal et al. 2011 |
|||||
4.79 × 10+12 |
ICES 2004 |
||||||
Sardinella brasiliensis |
1.50 × 10+12 |
Matsuura 1998 |
|||||
Sardinops melanostictus |
7.95 × 10+13 |
Ishida 2006 |
|||||
4.89 × 10+13 |
5.00 × 10-01 |
Tanaka 1974 |
|||||
2.08 × 10+14 |
3.35 × 10+00 |
Nakai and Hattori 1962 |
|||||
Sardinops sagax |
1.28 × 10+12 |
1.20 × 10-01 |
4.50 × 10-01 |
Lo et al. 1996 |
|||
2.12 × 10+00 |
Smith et al. 1989 |
||||||
3.10 × 10-01 |
9.30 × 10-01 |
Smith 1973 |
|||||
2.82 × 10+12 |
van der Lingen et al. 2001 |
||||||
Sprattus sprattus |
6.10 × 10+11 |
Kraus and Koster 2004 |
|||||
3.16 × 10-01 |
Voss et al. 2011 |
||||||
Engraulidae |
Anchoa mitchilli |
6.90 × 10-01 |
6.90 × 10-01 |
Houde 1987 |
|||
1.48 × 10+00 |
Purcell et al. 1994 |
||||||
Encrasicholina devisi |
9.50 × 10+06 |
Milton et al. 1995 |
|||||
Encrasicholina heterolobus |
9.75 × 10+06 |
Milton et al. 1995 |
|||||
Encrasicholina purpurea |
1.68 × 10+08 |
Somerton et al. 1993 |
|||||
Engraulis anchoita |
1.86 × 10+13 |
8.68 × 10-01 |
Krautz et al. 2007 |
||||
3.16 × 10+15 |
2.30 × 10+00 |
Ciechomski and Capezzani 1973 |
|||||
2.76 × 10-01 |
Pajáro et al. 2007 |
||||||
Engraulis capensis |
4.33 × 10+13 |
1.74 × 10-01 |
Armstrong et al. 1988 |
||||
3.98 × 10+13 |
1.97 × 10-01 |
3.93 × 10-01 |
Shelton et al. 1993 |
||||
2.27 × 10+13 |
van der Lingen et al. 2001 |
||||||
Engraulis encrasicolus |
1.12 × 10+00 |
2.81 × 10+00 |
Dahlberg 1979 |
||||
1.24 × 10+12 |
7.45 × 10-01 |
Garcia and Palomera 1996 |
|||||
4.63 × 10+11 |
5.65 × 10-01 |
1.13 × 10+00 |
Palomera and Pertierra 1993 |
||||
Santiago and Sanz 1992 |
|||||||
1.33 × 10+12 |
3.97 × 10-01 |
Somarakis et al. 2012 |
|||||
1.12 × 10+11 |
5.27 × 10-01 |
Somarakis et al. 2002 |
|||||
Engraulis encrasicolus |
3.77 × 10+12 |
ICES 2004 |
|||||
2.34 × 10+12 |
ICES 2004 |
||||||
3.94 × 10+13 |
Palomera 1992 |
||||||
Engraulis japonicus |
3.57 × 10-01 |
Hayasi 1966 |
|||||
5.32 × 10+12 |
6.57 × 10-01 |
2.05 × 10+00 |
Kim and Lo 2001 |
||||
2.31 × 10+13 |
1.11 × 10+00 |
3.41 × 10+00 |
Kim and Lo 2001 |
||||
5.77 × 10+14 |
Kono and Zenitani 2008 |
||||||
Engraulis mordax |
1.80 × 10+13 |
2.40 × 10-01 |
Fiedler et al. 1986 |
||||
1.82 × 10+13 |
Picquelle and Stauffer 1985 |
||||||
1.70 × 10+13 |
2.90 × 10-01 |
2.50 × 10+00 |
Bindman 1986 |
||||
7.49 × 10+12 |
3.50 × 10-01 |
CoteroAltamirano and GreenRuiz 1997 |
|||||
1.81 × 10+13 |
Hewitt 1985 |
||||||
Engraulis ringens |
3.86 × 10-01 |
Alheit 1987 |
|||||
6.74 × 10-01 |
Braun et al. 2004 in Krautz et al. 2007 |
||||||
9.10 × 10-01 |
Santander et al. 1983 |
||||||
1.12 × 10+00 |
Smith et al. 1989 |
||||||
Spratteloides delicatulus |
2.93 × 10+07 |
Milton et al. 1995 |
|||||
Spratteloides lewisi |
1.68 × 10+08 |
Milton et al. 1995 |
|||||
Gadidae |
Gadus morhua |
3.60 × 10+12 |
2.49 × 10-01 |
Armstrong et al. 2001 |
|||
1.33 × 10+14 |
Bondarenko et al. 2003 |
||||||
4.67 × 10+12 |
Daan 1981 |
||||||
3.70 × 10+13 |
Daan et al. 1985 |
||||||
2.50 × 10+11 |
1.10 × 10-01 |
Fossum 1988 |
|||||
1.50 × 10+13 |
Sundby and Bratland 1987 |
||||||
9.85 × 10+12 |
3.18 × 10+00 |
Heessen and Rijnsdorp 1989 |
|||||
5.00 × 10-02 |
7.00 × 10-01 |
Houde 1987 |
|||||
6.08 × 10+11 |
2.42 × 10+13 |
Kraus et al. 2012 |
|||||
1.55 × 10+12 |
Maxwell et al. 2012 |
||||||
1.39 × 10-01 |
Mountain et al. 2003 |
||||||
2.40 × 10-01 |
Voss et al. 2011 |
||||||
Melanogrammus aeglefinus |
5.58 × 10+12 |
Blanchard et al. 2003 |
|||||
3.25 × 10+13 |
Bondarenko et al. 2003 |
||||||
1.27 × 10+13 |
3.80 × 10-01 |
Koslow et al. 1985 |
|||||
2.50 × 10+12 |
Maxwell et al. 2012 |
||||||
1.22 × 10-01 |
Mountain et al. 2003 |
||||||
1.00 × 10-01 |
Saville 1956 |
||||||
Merluccius merluccius |
1.36 × 10+12 |
3.80 × 10-01 |
Murua et al. 2010 |
||||
Theragra chalcogramma |
6.90 × 10+14 |
4.00 × 10-01 |
Kim and Gunderson 1989 |
||||
Haemulidae |
Haemulon flavolineatum |
2.00 × 10-01 |
2.00 × 10-01 |
Houde 1987 |
|||
Labridae |
Tautogolabrus adspersus |
3.00 × 10+00 |
Williams et al. 1973 |
||||
Merlucciidae |
Macruronus novaezelandiae |
6.85 × 10+12 |
Zeldis et al. 1998 |
||||
Percichthyidae |
Morone saxatilis |
1.00 × 10-01 |
2.00 × 10-01 |
Houde 1987 |
|||
2.35 × 10+00 |
4.71 × 10+00 |
Polgar 1977 in Dahlberg 1979 |
|||||
2.90 × 10+00 |
5.80 × 10+00 |
Polgar 1977 in Dahlberg 1979 |
|||||
9.21 × 10-01 |
2.30 × 10+00 |
Portner 1975 in Dahlberg 1979 |
|||||
1.02 × 10+00 |
2.30 × 10+00 |
Swartzman et al. 1977 in Dahlberg 1979 |
|||||
Pleuronectidae |
Microstomus pacificus |
2.98 × 10+09 |
6.30 × 10-01 |
2.16 × 10+00 |
Lo et al. 1993 |
||
Pleuronectes platessa |
1.73 × 10+12 |
1.87 × 10-01 |
Armstrong et al. 2001 |
||||
4.48 × 10+12 |
7.46 × 10-02 |
Harding et al. 1978 |
|||||
4.05 × 10+12 |
1.28 × 10-01 |
Harding et al. 1978 |
|||||
3.36 × 10+10 |
1.24 × 10-01 |
3.22 × 10+00 |
Coombs et al. 1990 |
||||
3.70 × 10+13 |
Daan et al. 1985 |
||||||
1.87 × 10+13 |
2.10 × 10+00 |
Heessen and Rijnsdorp 1989 |
|||||
1.71 × 10+12 |
Maxwell et al. 2012 |
||||||
4.06 × 10+12 |
7.30 × 10-02 |
1.18 × 10+00 |
Harding and Talbot 1973 |
||||
1.40 × 10+13 |
9.60 × 10-02 |
van der Land 1991 |
|||||
3.39 × 10+12 |
7.28 × 10-02 |
Bannister et al. 1974 |
|||||
Reinhardtius hippoglossoides |
2.17 × 10+11 |
Bondarenko et al. 2003 |
|||||
Scombridae |
Scomber japonicus |
3.02 × 10+11 |
Watanabe et al. 1999 |
||||
5.00 × 10+14 |
Tanaka 1974 |
||||||
Scomber scombrus |
3.03 × 10+14 |
Berrien et al. 1981 |
|||||
1.98 × 10+15 |
Lockwood et al. 1981 |
||||||
1.23 × 10+00 |
Portilla et al. 2007 |
||||||
2.22 × 10+13 |
1.50 × 10+15 |
Priede and Watson 1993 |
|||||
6.40 × 10+13 |
1.34 × 10-01 |
1.20 × 10+00 |
Sette 1943 |
||||
1.04 × 10-01 |
Thompson 1989 |
||||||
1.69 × 10+14 |
Solá et al. 1998 |
||||||
5.28 × 10-01 |
Ware and Lambert 1985 |
||||||
6.00 × 10+14 |
Lockwood 1988 |
||||||
1.37 × 10+15 |
Lockwood 1988 |
||||||
3.60 × 10+13 |
Lockwood 1988 |
||||||
1.43 × 10+00 |
1.57 × 10+00 |
Dekhnik 1964 in Dahlberg 1979 |
|||||
Trachurus symmetricus |
6.66 × 10+14 |
8.45 × 10-01 |
3.04 × 10+00 |
Farris 1961 |
|||
Trachurus trachurus |
1.75 × 10+14 |
Solá et al. 1998 |
|||||
1.42 × 10+15 |
Lockwood 1988 |
||||||
Soleidae |
Solea solea |
2.77 × 10+12 |
3.90 × 10-01 |
Armstrong et al. 2001 |
|||
5.45 × 10-01 |
3.13 × 10+00 |
Riley 1974 |
|||||
1.05 × 10+00 |
7.60 × 10+00 |
Riley 1974 |
|||||
2.84 × 10+13 |
4.95 × 10-01 |
3.85 × 10+00 |
van der Land 1991 |
||||
Sparidae |
Pagrus auratus |
2.99 × 10+09 |
1.86 × 10+00 |
2.19 × 10+00 |
Jackson and Cheng 2001 |
||
4.50 × 10+11 |
7.10 × 10-01 |
1.42 × 10+00 |
Zeldis and Francis 1998 |
||||
Sternoptychidae |
Maurolicus muelleri |
1.84 × 10+12 |
Okiyama 1981 |
||||
Trachichthyidae |
Hoplostethus atlanticus |
1.07 × 10+10 |
3.75 × 10+11 |
Koslow et al. 1995 |
Literature Cited
Alheit, J. 1987. Egg cannibalism versus egg predation - Their significance in anchovies. South African Journal of Marine Science 5:467–470.
Andersen, K. H., and J. E. Beyer. 2006. Asymptotic size determines species abundance in the marine size spectrum. The American Naturalist 168:54–61.
Armstrong, M. J., P. Connolly, R. D. M. Nash, M. G. Pawson, E. Alesworth, P. J. Coulahan, M. Dickey-Collas, S. P. Milligan, M. F. O'Neill, P. R. Witthames, and L. Woolner. 2001. An application of the annual egg production method to estimate the spawning biomass of cod (Gadus morhua L.), plaice (Pleuronectes platessa L.) and sole (Solea solea L.) in the Irish Sea. Ices Journal of Marine Science 58:183–203.
Armstrong, M., P. Shelton, I. Hampton, G. Jolly, and Y. Melo. 1988. Egg-production estimates of anchovy biomass in the Southern Benguela system. California Cooperative Oceanic Fisheries Investigations Reports 29:137–157.
Ashton, H., D. Farkvam, and B. March. 1993. Fatty-acid composition of lipids in the eggs and alevins from wild and cultured chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences 50:648–655.
Bannister, R. C. A., D. Harding, and S. J. Lockwood. 1974. Larval mortality and subsequent year-class strength in the plaice (Pleuronectes platessa). Pages 21–37 in J. H. S. Blaxter, editor. The early life history of fish. Springer-Verlag, New York.
Bernal, M., Y. Stratoudakis, S. Wood, L. Ibaibarriaga, L. Valdes, and D. Borchers. 2011. A revision of daily egg production estimation methods, with application to Atlanto-Iberian sardine. 2. Spatially and environmentally explicit estimates of egg production. Ices Journal of Marine Science 68:528–536.
Berrien, P. L., N. A. Naplin, and M. R. Pennington. 1981. Atlantic mackerel, Scomber scombrus, egg production and spawning population estimates for 1977 in the Gulf of Maine, Georges Bank, and Middle Atlantic Bight. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 178:279–288.
Bindman, A. G. 1986. The 1985 spawning biomass of the northern anchovy. California Cooperative Oceanic Fisheries Investigations Report 27:16–24.
Blanchard, J. L., K. T. Frank, and J. E. Simon. 2003. Effects of condition on fecundity and total egg production of eastern Scotian Shelf haddock (Melanogrammus aeglefinus). Canadian Journal of Fisheries and Aquatic Sciences 60:321–332.
Bondarenko, M. V., A. S. Krovnin, and V. P. Serebryakov. 2003. Ranging year-class strength and survival rates during early life history of the Barents Sea food fishes to establish biological reference points and evaluate environmental effects. Pages 1–107.
Chen, M., H. Liu, and B. Chen. 2012. Effects of dietary essential fatty acids on reproduction rates of a subtropical calanoid copepod, Acartia erythraea. Marine Ecology Progress Series 455:95–110.
Chu, F.-L. E., E. D. Lund, P. R. Littreal, K. E. Ruck, and E. Harvey. 2009. Species-specific differences in long-chain n-3 essential fatty acid, sterol, and steroidal ketone production in six heterotrophic protist species. Aquatic Biology 6:159–172.
Ciechomski, J. D. de, and D. A. Capezzani. 1973. Studies on the evaluation of the spawning stocks of the Argentinean anchovy, Engraulis anchoita, on the basis of egg surveys. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 164:293–301.
Coombs, S. H., J. H. Nichols, and C. A. Fosh. 1990. Plaice eggs (Pleuronectes platessa L) in the Southern North Sea - Abundance, spawning area, vertical distribution, and buoyancy. Journal Du Conseil 47:133–139.
Copeman, L. A., C. C. Parrish, J. A. Brown, and M. Harel. 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210:285–304.
Copeman, L., B. Daly, G. L. Eckert, and J. Swingle. 2014. Storage and utilization of lipid classes and fatty acids during the early ontogeny of blue king crab, Paralithodes platypus. Aquaculture 424–425:86–94.
CoteroAltamirano, C. E., and Y. GreenRuiz. 1997. Spawning biomass off the northern anchovy (Engraulis morda × ) in the Gulf of California during 1991. California Cooperative Oceanic Fisheries Investigations Reports 38:171–179.
Cripps, G. C., J. L. Watkins, H. J. Hill, and A. Atkinson. 1999. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Marine Ecology Progress Series 181:177–188.
Daan, N. 1981. Comparison of estimates of egg production of the Southern Bight cod stock from plankton surveys and market statistics. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 178:242–243.
Daan, N., A. D. Rijnsdorp, and G. R. Vanoverbeeke. 1985. Predation by North Sea herring Clupea harengus on eggs of plaice Pleuronectes platessa and cod Gadus morhua. Transactions of the American Fisheries Society 114:499–506.
Dahlberg, M. D. 1979. Review of survival rates of fish eggs and larvae in relation to impact assessments. Marine Fisheries Review 41:1–12.
Farris, D. A. 1961. Abundance and distribution of eggs and larvae and survival of larvae of jack mackerel (Trachurus symmetricus). Fishery Bulletin 61:247–279.
Fiedler, P. C., R. D. Methot, and R. P. Hewitt. 1986. Effects of California El Nino 1982-1984 on the northern anchovy. Journal of Marine Research 44:317–338.
Fossum, P. 1988. A tentative method to estimate morality in the egg and early larval stages, with special reference to cod (Gadus morhua L.) 18:329–349.
Garcia, A., and I. Palomera. 1996. Anchovy early life history and its relation to its surrounding environment in the western Mediterranean basin. Scientia Marina 60:155–166.
Gonçalves, A. M. M., U. M. Azeiteiro, M. A. Pardal, and M. De Troch. 2012. Fatty acid profiling reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuarine Coastal and Shelf Science 109:70–80.
Harding, D., J. H. Nichols, and D. S. Tungate. 1978. The spawning of plaice (Pleuronectes platessa L.) in the southern North Sea and English Channel. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 172:102–113.
Harding, D., and J. W. Talbot. 1973. Recent studies on the eggs and larvae of the plaice (Pleuronectes platessa L.) in the Southern Bight. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 164:261–269.
Harrell, R., and L. Woods. 1995. Comparative fatty-acid composition of eggs from domesticated and wild striped bass (Morone sa × atilis). Aquaculture 133:225–233.
Hayasi, S. 1966. A note on the biology and fishery of the Japanese anchovy Engraulis japonica (Houttuyn). California Cooperative Oceanic Fisheries Investigations Reports 11:44–57.
Hazzard, S. E., and G. S. Kleppel. 2003. Egg production of the copepod Acartia tonsa in Florida Bay: role of fatty acids in the nutritional composition of the food environment. Marine Ecology Progress Series 252:199–206.
Heessen, H. J. L., and A. D. Rijnsdorp. 1989. Investigations on egg production and mortality of cod (Gadus morhua L) and plaice (Pleuronectes platessa L) in the southern and eastern North Sea in 1987 and 1988. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 191:15–20.
Hewitt, R. P. 1985. Comparison between egg production method and larval census method for fish biomass assessment. Pages 95–99 An egg production method for estimating spawning biomass of pelagic fish: Application to the northern anchovy, Engraulis mordax.
Houde, E. D. 1977. Abundance and potential yield of the scaled sardine, Harengula jaguana, and aspects of its early life history in the eastern Gulf of Mexico. Fishery Bulletin 75:613–628.
Houde, E. D. 1987. Fish early life dynamics and recruitment variability. American Fisheries Society Symposium 2:17–29.
ICES. 2004. The DEPM estimation of spawning-stock biomass for sardine and anchovy. Page 91.
Ishida, M. 2006. Rapid decrease of egg production of Pacific stock of Japanese sardine, Sardinops melanostictus, and characteristics of persistent spawning ground in Tosa Bay, southwestern Japan. Bulletin of the Japanese Society of Fisheries Oceanography 70:170–175.
Jackson, G., and Y. W. Cheng. 2001. Parameter estimation with egg production surveys to estimate snapper, Pagrus auratus, biomass in Shark Bay, Western Australia. Journal of Agricultural Biological and Environmental Statistics 6:243–257.
Kim, J., and N. C. H. Lo. 2001. Temporal variation of seasonality of egg production and the spawning biomass of Pacific anchovy, Engraulis japonicus, in the southern waters of Korea in 1983-1994. Fisheries Oceanography 10:297–310.
Kim, S., and D. Gunderson. 1989. Cohort Dynamics of Walleye Pollock in Shelikof Strait, Gulf of Alaska, During the Egg and Larval Periods. Transactions of the American Fisheries Society 118:264–273.
Kono, N., and H. Zenitani. 2008. Distribution of egg production of Japanese anchovy, Engraulis japonicus, in the Seto Inland Sea, Japan, from 1980 to 2005. Nippon Suisan Gakkaishi 74:636–644.
Koslow, J. A., S. Brault, J. Dugas, and F. Page. 1985. Anatomy of an apparent year-class failure - the early life-history of the 1983 Browns Bank haddock Melanogrammus aeglefinus. Transactions of the American Fisheries Society 114:478–489.
Koslow, J. A., C. M. Bulman, J. M. Lyle, and K. A. Haskard. 1995. Biomass assessment of a deep-water fish, the orange roughy (Hoplostethus atlanticus), based on an egg survey. Marine and Freshwater Research 46:819–830.
Kraus, G., H.-H. Hinrichsen, R. Voss, E. Teschner, J. Tomkiewicz, and F. W. Koester. 2012. Robustness of egg production methods as a fishery independent alternative to assess the Eastern Baltic cod stock (Gadus morhua callarias L.). Fisheries Research 117:75–85.
Kraus, G., and F. W. Koster. 2004. Estimating Baltic sprat (Sprattus sprattus balticus S.) population sizes from egg production. Fisheries Research 69:313–329.
Krautz, M. C., L. R. Castro, and M. Gonzalez. 2007. Interaction of two key pelagic species in the Humboldt Current: euphausiid predation on anchoveta eggs estimated by immunoassays. Marine Ecology Progress Series 335:175–185.
Van der Land, M. 1991. Distribution of flatfish eggs in the 1989 egg surveys in the southeastern North Sea and mortality of plaice and sole eggs. Netherlands Journal of Sea Research 27:277–286.
Laurel, B. J., L. A. Copeman, T. P. Hurst, and C. C. Parrish. 2010. The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Marine Biology 157:1713–1724.
Lea, M. A., P. D. Nichols, and G. Wilson. 2002. Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari) - Southern ocean food-web implications. Polar Biology 25:843–854.
Van der Lingen, C. D., L. Hutchings, D. Merkle, J. J. van der Westhuizen, and J. Nelson. 2001. Comparative spawning habitats of anchovy (Engraulis capensis) and sardine (Sardinops sagax) in the southern Benguela upwelling ecosystem. Pages 185–209 in G. H. Kruse, N. Bez, A. Booth, M. W. Dorn, S. Hills, R. N. Lipcius, D. Pelletier, C. Roy, S. J. Smith, and D. Witherell, editors. University of Alaska Sea Grant College Program Report. Spatial processes and management of marine populations.
Lo, N. C. H., J. R. Hunter, H. G. Moser, and P. E. Smith. 1993. A daily fecundity reduction method of biomass estimation with application to Dover sole Microstomus pacificus. Bulletin of Marine Science 53:842–863.
Lo, N. C. H., Y. A. G. Ruiz, M. J. Cervantes, H. G. Moser, and R. J. Lynn. 1996. Egg production and spawning biomass of Pacific sardine (Sardinops sagax) in 1994, determined by the daily egg production method. California Cooperative Oceanic Fisheries Investigations Reports 37:160–174.
Lockwood, S. J. 1988. The mackerel: Its biology, assessment and the management of a fishery. Fishing News Books, Ltd., Farnham, England.
Lockwood, S. J., J. H. Nichols, and W. A. Dawson. 1981. The estimation of a mackerel (Scomber scombrus L.) spawning stock size by plankton survey. Journal of Plankton Research 3:217–233.
Lund, I., S. J. Steenfeldt, K. I. Suhr, and B. W. Hansen. 2008. A comparison of fatty acid composition and quality aspects of eggs and larvae from cultured and wild broodstock of common sole (Solea solea L.). Aquaculture Nutrition 14:544–555.
Matsuura, Y. 1998. Brazilian sardine (Sardinella brasiliensis) spawning in the southeast Brazilian Bight over the period 1976-1993. Revista Brasileira de Oceanografia 46:33–43.
Maxwell, D. L., M. J. Armstrong, S. Beggs, and J. N. Aldridge. 2012. Annual egg production estimates of cod (Gadus morhua), plaice (Pleuronectes platessa) and haddock (Melanogrammus aeglefinus) in the Irish Sea: The effects of modelling choices and assumptions. Fisheries Research 117:146–155.
Mayor, D. J., T. R. Anderson, D. W. Pond, and X. Irigoien. 2009a. Limitation of egg production in Calanus finmarchicus in the field: A stoichiometric analysis. Journal of Marine Systems 78:511–517.
Mayor, D. J., T. R. Anderson, D. W. Pond, and X. Irigoien. 2009b. Egg production and associated losses of carbon, nitrogen and fatty acids from maternal biomass in Calanus finmarchicus before the spring bloom. Journal of Marine Systems 78:505–510.
Miller, T. J., L. B. Crowder, J. A. Rice, and E. A. Marschall. 1988. Larval size and recruitment mechanisms in fishes - Toward a conceptual-framework. Canadian Journal of Fisheries and Aquatic Sciences 45:1657–1670.
Milton, D. A., S. J. M. Blaber, and N. J. F. Rawlinson. 1995. Fecundity and egg production of 4 species of short-lived clupeoid from Solomon Islands, tropical South Pacific. Ices Journal of Marine Science 52:111–125.
Mountain, D., P. Berrien, and J. Sibunka. 2003. Distribution, abundance and mortality of cod and haddock eggs and larvae on Georges Bank in 1995 and 1996. Marine Ecology Progress Series 263:247–260.
Murua, H., L. Ibaibarriaga, P. Alvarez, M. Santos, M. Korta, M. Santurtun, and L. Motos. 2010. The daily egg production method: A valid tool for application to European hake in the Bay of Biscay? Fisheries Research 104:100–110.
Nakai, Z., and S. Hattori. 1962. Quantitative distribution of eggs and larvaeof the Japanese sardine by year, 1949 through 1951. Bulletin of Tokai Regional Fisheries Research Laboratory 9:23–60.
Navarro, J. C., and R. Villanueva. 2003. The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219:613–631.
Okiyama, M. 1981. Abundance and distribution of eggs and larvae of a sternoptychid fish, Maurolicus muelleri, in the Japan Sea, with comments on the strategy for successful larval life. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 178:246–247.
Ortega, A., and G. Mourente. 2010. Comparison of the lipid profiles from wild caught eggs and unfed larvae of two scombroid fish: northern bluefin tuna (Thunnus thynnus L., 1758) and Atlantic bonito (Sarda sarda Bloch, 1793). Fish Physiology and Biochemistry 36:461–471.
Ouellet, P. 2001. Cod egg characteristics and viability in relation to low temperature and maternal nutritional condition. ICES Journal of Marine Science 58:672–686.
Pajáro, M., J. Curelovich, and G. J. Macchi. 2007. Egg cannibalism in the northern population of the Argentine anchovy, Engraulis anchoita (Clupeidae). Fisheries Research 83:253–262.
Palomera, I. 1992. Spawning of anchovy Engraulis-encrasicolus in the northwestern Mediterranean relative to hydrographic features in the region. Marine Ecology Progress Series 79:215–223.
Palomera, I., and J. P. Pertierra. 1993. Anchovy spawning biomass estimate by the daily egg production method in 1990 in the western Mediterranean Sea. Scientia Marina 57:243–251.
Picquelle, S., and G. Stauffer. 1985. Parameter estimation for an egg production method of anchovy biomass assessment. Pages 7–15.
Pond, D., R. Harris, R. Head, and D. Harbour. 1996. Environmental and nutritional factors determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters off Plymouth, UK. Marine Ecology Progress Series 143:45–63.
Portilla, E., E. McKenzie, D. Beare, and D. Reid. 2007. Estimating natural interstage egg mortality of Atlantic mackerel (Scomber scombrus) and horse mackerel (Trachurus trachurus) in the northeast Atlantic using a stochastic model. Canadian Journal of Fisheries and Aquatic Sciences 64:1656–1668.
Priede, I. G., and J. J. Watson. 1993. An evaluation of the daily egg-production method for estimating biomass. Bulletin of Marine Science 53:891–911.
Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde, and J. C. Gamble. 1994. Predation mortality of bay anchovy Anchoa mitchilli eggs and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Marine Ecology Progress Series 114:47–58.
Riley, R. D. 1974. The distribution and mortliaty of sole eggs [Solea solea (L.)] in inshore areas. Pages 39–52 in J. H. S. Blaxter, editor. The early life history of fish. Springer-Verlag, New York, New York, USA.
Salze, G., D. R. Tocher, W. J. Roy, and D. A. Robertson. 2005. Egg quality determinants in cod (Gadus morhua L.): egg performance and lipids in eggs from farmed and wild broodstock. Aquaculture Research 36:1488–1499.
Santander, H., J. Alheit, V. MacCall, and V. Alamo. 1983. Egg mortality of the Peruvian anchovy (Engraulis ringens) caused by cannibalism and predation by sardine (Sardinops sagax ). FAO Fish Rep 291:1011–1025.
Santiago, J., and A. Sanz. 1992. Egg production estimates of the Bay of Biscay anchovy, Engraulis encrasicholus (L.), spawning stock in 1987 and 1988. Boletin del Instituto Espanol de Oceanografia 8:225–230.
Saunders, M. I., P. A. Thompson, A. G. Jeffs, C. Säwström, N. Sachlikidis, L. E. Beckley, and A. M. Waite. 2012. Fussy Feeders: Phyllosoma larvae of the western rocklobster (Panulirus cygnus) demonstrate prey preference. PLoS ONE 7:e36580.
Saville, A. 1956. Eggs and larvae of haddock (Gadus aeglefinus L.) at Faroe. Marine Research. Department of Agriculture and Fisheries for Scotland.
Sette, O. 1943. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Fishery Bulletin 50:149–237.
Shelton, P. A., M. J. Armstrong, and B. A. Roel. 1993. An overview of the application of the daily egg-production method in the assessment and management of anchovy in the southeast Atlantic. Bulletin of Marine Science 53:778–794.
Shin, Y.-J., M. Travers, and O. Maury. 2010. Coupling low and high trophic levels models: Towards a pathways-orientated approach for end-to-end models. Progress in Oceanography 84:105–112.
Silversand, C., B. Norberg, and C. Haux. 1996. Fatty-acid composition of ovulated eggs from wild and cultured turbot (Scophthalmus maximus) in relation to yolk and oil globule lipids. Marine Biology 125:269–278.
Smith, P. E. 1973. The mortality and dispersal of sardine eggs and larvae. Rapports et Proces-Verbauxdes Reunions, Conseil International pour l'Exploration de la Mer 164:282–292.
Smith, P. E., H. Santander, and J. Alheit. 1989. Comparison of the mortality rates of Pacific sardine, Sardinops sagax, and Peruvian anchovy, Engraulis ringens, eggs off Peru. Fishery Bulletin 87:497–509.
Solá, A., A. Lago de Lanzós, C. Franco, P. Sánchez, L. Valdés, and A. Farinha. 1998. Mackerel Scomber scombrus L., 1758 and horse mackerel Trachurus trachurus (L., 1758) egg production in ICES divisions 8c and 9a during 1995. Informes Técnicos, Instituto Español de Oceanografía 171:3–33.
Somarakis, S., C. Koutsikopoulos, A. Machias, and N. Tsimenides. 2002. Applying the daily egg production method (DEPM) to small stocks in highly heterogeneous seas. Fisheries Research 55:193–204.
Somarakis, S., E. Schismenou, A. Siapatis, M. Giannoulaki, A. Kallianiotis, and A. Machias. 2012. High variability in the daily egg production method parameters of an eastern Mediterranean anchovy stock: Influence of environmental factors, fish condition and population density. Fisheries Research 117:12–21.
Somerton, D. A., D. R. Kobayashi, and K. C. Landgraf. 1993. Stock assessment of nehu, Encrasicholina purpurea, using the egg-production method. Bulletin of Marine Science 53:768–777.
Sundby, S., and P. Bratland. 1987. Karlegging av gytefeltene for norsk-arktisk torsk I Nord-Norge og beregning av eggproduksjonen I arene 1983-1985 1987:1–58.
Tanaka, S. 1974. Significance of egg and larval surveys in the studies of population dynamics of fish. Pages 151–157 in J. H. S. Blaxter, editor. The early life history of fish. Springer-Verlag, New York.
Thompson, A. B. 1989. Mackerel (Scomber scombrus) egg mortality - the western mackerel stock. Journal of Plankton Research 11:1297–1306.
Tiselius, P., B. W. Hansen, and D. Calliari. 2012. Fatty acid transformation in zooplankton: from seston to benthos. Marine Ecology Progress Series 446:131–144.
Viso, A.-C., and J.-C. Marty. 1993. Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533.
Volkman, J., S. Jeffrey, P. Nichols, G. Rogers, and C. Garland. 1989. Fatty-acid and lipid-composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128:219–240.
Voss, R., H.-H. Hinrichsen, D. Stepputtis, M. Bernreuther, B. Huwer, V. Neumann, and J. O. Schmidt. 2011. Egg mortality: predation and hydrography in the central Baltic. ICES Journal of Marine Science 68:1379–1390.
Wang, M. 2013. Understanding nutrional requirements of spiny lobster larvae. University of Auckland, Auckland, New Zealand.
Ware, D. M., and T. C. Lambert. 1985. Early life history of Atlantic mackerel (Scomber scombrus) in the southern Gulf of St Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 42:577–592.
Watanabe, C., T. Hanai, K. Meguro, R. Ogino, and R. Kimura. 1999. Spawning biomass estimates of chub mackerel Scomber japonicus of Pacific subpopulation off central Japan by a daily egg production method. Nippon Suisan Gakkaishi 65:695–702.
Williams, G. C., D. C. Williams, and R. J. Miller. 1973. Mortality rates of plantonic eggs of the cunner, Tautogolabrus adspersus (Walbaum), in Long Island Sound. Pages 181–195 in A. L. Pacheco, editor. Proceedings of a workshop on egg, larval, and juvenile stages of fish in Atlantic Coast estuaries.
Zeldis, J. R., and R. I. C. C. Francis. 1998. A daily egg production method estimate of snapper biomass in Hauraki Gulf, New Zealand. Ices Journal of Marine Science 55:522–534.
Zeldis, J. R., R. C. Murdoch, P. L. Cordue, and M. J. Page. 1998. Distribution of hoki (Macruronus novaezelandiae) eggs, larvae, and adults off Westland, New Zealand, and the design of an egg production survey to estimate hoki biomass. Canadian Journal of Fisheries and Aquatic Sciences 55:1682–1694.