- Heidi Swanson, Martin Lysy, Michael Power, Ashley Stasko, Jim Johnson, and James Reist.
- ² 2014. A new probabilistic method for quantifying n-dimensional ecological niches and niche
- ³ overlap. *Ecology*
- 4 APPENDICES
- ⁵ Appendix D. A comparison of overlap at different α .

¹ Appendix D. Comparison of Overlap at Different α

² In the manuscript, we define N_R at the nominal level of $\alpha = 0.95$. Here, we show how changing α

³ affects the overlap metric. Using our example data, we estimated probability of overlap at

- $\alpha = 0.8, 0.9, 0.95, 0.99$ (Table D2). While increasing α results in higher probability of overlap,
- ⁵ the ordering of pairwise overlap metrics remains the same. For example, Least Cisco has a higher
- ⁶ probability of overlapping onto the niche of Arctic Cisco than either Broad Whitefish or Lake
- ⁷ Whitefish, regardless of α) (Table D2).
- ⁸ We first present a summary of data that were used in this analysis.

TABLE D1: Summary of the stable isotope data for four species of fish.

		Isotope % <i>o</i> : mean(sd)					
Species	N _{samples}	$\delta^{15}N$	$\delta^{13}C$	$\delta^{34}S$			
Arctic Cisco	69	13(0.82)	-24(1.1)	15(1.2)			
Broad Whitefish	71	9.3(1.2)	-27(2)	-3.1(9.9)			
Lake Whitefish	67	11(0.91)	-25(1.5)	6.1(4.8)			
Least Cisco	70	12(0.73)	-25(1.2)	11(3.4)			

TABLE D2: Posterior means and 95% credible intervals for the overlap metric, with α for N_R varying from 0.8-0.99. Probability of overlap (%) increases with increasing α , but patterns of pairwise overlap remain the same. Species abbreviations are: Arctic Cisco (ARCS), Broad Whitefish (BDWF), Lake Whitefish (LKWF), and Least Cisco (LSCS).

BDWF onto ARCS			ARCS onto BDWF			_	LKWF onto ARCS				ARCS onto LKWF			
α	Mean	9	5% C.I.	α	Mean	95% C.I.	-	α	Mean	95% C.I.		α	Mean	95% C.I.
0.8	0.083	((), 0.26)	0.8	1.3	(0.03, 6)	-	0.8	3.6	(1.6, 6.5)		0.8	28	(8.4, 54)
0.9	0.17	(0.	02, 0.49)	0.9	4.7	(0.36, 17)		0.9	5.5	(2.6, 9.4)		0.9	49	(24, 75)
0.95	0.3	(0.	.05, 0.8)	0.95	11	(1.4, 32)		0.95	7.4	(3.7, 12)		0.95	66	(41, 87)
0.99	0.78	(0.	.19, 1.8)	0.99	33	(9, 67)		0.99	12	(6.5, 19)		0.99	87	(69, 98)
							_							
LSCS onto ARCS			ARCS onto LSCS			_	LKWF onto BDWF				BDWF onto LKWF			
0	u Mea	an	95% C.I.	α	Mean	95% C.I.	-	α	Mean	95% C.I.	_	α	Mean	95% C.I.
0	.8 22	2	(15, 31)	0.8	60	(45, 76)	_	0.8	50	(31, 71)		0.8	12	(6.6, 19)
0	.9 31	l	(22, 41)	0.9	73	(58, 87)		0.9	66	(46, 85)		0.9	19	(11, 28)
0.9	95 38	3	(28, 49)	0.95	81	(68, 93)		0.95	78	(59, 93)		0.95	26	(16, 37)
0.9	99 50)	(39, 62)	0.99	92	(82, 98)	_	0.99	92	(80, 99)		0.99	41	(28, 55)
LSCS onto BDWF			BDWF onto LSCS			_	LSCS onto LKWF				LKWF onto LSCS			
α	Mean	ı 9	5% C.I.	α	Mean	95% C.I.	_	α	Mean	95% C.I.		α	Mean	95% C.I.
0.8	17	(-	4.3, 40)	0.8	1.7	(0.58, 3.4)		0.8	64	(47, 81)		0.8	31	(21, 43)
0.9	34	((12, 65)	0.9	3	(1.1, 5.7)		0.9	80	(64, 92)		0.9	43	(30, 57)
0.95	51	((24, 82)	0.95	4.5	(1.9, 8.5)		0.95	89	(76, 97)		0.95	53	(39, 67)
0.99	80	((53, 97)	0.99	9	(4.3, 16)	_	0.99	97	(92, 100)		0.99	70	(56, 83)