${ }^{1}$ Heidi Swanson, Martin Lysy, Michael Power, Ashley Stasko, Jim Johnson, and James Reist.
2 2014. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology

4 Appendices
${ }_{5}$ Appendix D. A comparison of overlap at different α.

Appendix D. Comparison of Overlap at Different α

In the manuscript, we define N_{R} at the nominal level of $\alpha=0.95$. Here, we show how changing α affects the overlap metric. Using our example data, we estimated probability of overlap at $\alpha=0.8,0.9,0.95,0.99$ (Table D2). While increasing α results in higher probability of overlap, the ordering of pairwise overlap metrics remains the same. For example, Least Cisco has a higher probability of overlapping onto the niche of Arctic Cisco than either Broad Whitefish or Lake Whitefish, regardless of α) (Table D2).

We first present a summary of data that were used in this analysis.

TABLE D1: Summary of the stable isotope data for four species of fish.

		Isotope $\%_{0}:$ mean(sd)		
Species	$N_{\text {samples }}$	$\delta^{15} \mathrm{~N}$	$\delta^{13} \mathrm{C}$	$\delta^{34} \mathrm{~S}$
Arctic Cisco	69	$13(0.82)$	$-24(1.1)$	$15(1.2)$
Broad Whitefish	71	$9.3(1.2)$	$-27(2)$	$-3.1(9.9)$
Lake Whitefish	67	$11(0.91)$	$-25(1.5)$	$6.1(4.8)$
Least Cisco	70	$12(0.73)$	$-25(1.2)$	$11(3.4)$

TABLE D2: Posterior means and 95% credible intervals for the overlap metric, with α for N_{R} varying from 0.8-0.99. Probability of overlap (\%) increases with increasing α, but patterns of pairwise overlap remain the same. Species abbreviations are: Arctic Cisco (ARCS), Broad Whitefish (BDWF), Lake Whitefish (LKWF), and Least Cisco (LSCS).

BDWF onto ARCS			ARCS onto BDWF			LKWF onto ARCS			ARCS onto LKWF		
α	Mean	95\% C.I.									
0.8	0.083	(0, 0.26)	0.8	1.3	$(0.03,6)$	0.8	3.6	$(1.6,6.5)$	0.8	28	$(8.4,54)$
0.9	0.17	(0.02, 0.49)	0.9	4.7	$(0.36,17)$	0.9	5.5	$(2.6,9.4)$	0.9	49	$(24,75)$
0.95	0.3	$(0.05,0.8)$	0.95	11	$(1.4,32)$	0.95	7.4	$(3.7,12)$	0.95	66	$(41,87)$
0.99	0.78	(0.19, 1.8)	0.99	33	$(9,67)$	0.99	12	$(6.5,19)$	0.99	87	$(69,98)$

LSCS onto ARCS			ARCS onto LSCS			LKWF onto BDWF			BDWF onto LKWF		
α	Mean	95\% C.I.									
0.8	22	$(15,31)$	0.8	60	$(45,76)$	0.8	50	$(31,71)$	0.8	12	$(6.6,19)$
0.9	31	$(22,41)$	0.9	73	$(58,87)$	0.9	66	$(46,85)$	0.9	19	$(11,28)$
0.95	38	$(28,49)$	0.95	81	$(68,93)$	0.95	78	$(59,93)$	0.95	26	$(16,37)$
0.99	50	$(39,62)$	0.99	92	$(82,98)$	0.99	92	$(80,99)$	0.99	41	$(28,55)$

LSCS onto BDWF			BDWF onto LSCS			LSCS onto LKWF			LKWF onto LSCS		
α	Mean	95\% C.I.									
0.8	17	$(4.3,40)$	0.8	1.7	$(0.58,3.4)$	0.8	64	$(47,81)$	0.8	31	$(21,43)$
0.9	34	$(12,65)$	0.9	3	$(1.1,5.7)$	0.9	80	$(64,92)$	0.9	43	$(30,57)$
0.95	51	$(24,82)$	0.95	4.5	$(1.9,8.5)$	0.95	89	$(76,97)$	0.95	53	$(39,67)$
0.99	80	$(53,97)$	0.99	9	$(4.3,16)$	0.99	97	$(92,100)$	0.99	70	$(56,83)$

