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APPENDIX C. SAMPLING ALGORITHMS FOR BAYESIAN POSTERIORS AND DISCUSSION OF1

PRIORS2

Let X = (X1, . . . ,XN) be N iid observations of a multivariate Normal distribution,3

Xi = (Xi1, . . . ,XiN)
iid∼N (µ,Σ),4

with unknown µ and Σ to be estimated from the data. Here we provide two specifications of the5

prior distribution π(µ,Σ) which lead to simple and effective sampling algorithms for the posterior6

distribution p(µ,Σ |X).7

C.1. Independent µ and Σ. It is possible to take this one step further by specifying a

noninformative prior for Σ: π(Σ) = π(Σ |µ) ∝ |Σ|(ν+n+1)/2. The following prior assumes that, in

the absence of any data, knowing µ has no bearing on the uncertainty about Σ and vice versa. In

distributional terms, it is written as

µ∼N (λ,V )

Σ |µ∼W −1(Ψ,ν),

meaning that µ is a priori Normally distributed independently of Σ, which in turn follows an n8

dimensional inverse Wishart distribution:9

f (Σ |Ψ,ν) =
|Ψ|ν/2

2νn/2Γn(
ν

2)
|Σ|−(ν+n+1)/2 exp

{
−1

2 tr(ΨΣ
−1)
}
,10

2



where1

Γn(a) = π
n(n−1)/4

n

∏
i=1

Γ
(
a+ 1−i

2

)
2

is the multivariate gamma function. We shall refer to this prior as the Normal Independent Inverse

Wishart (NIIW) prior and denote it π1(µ,Σ). This prior is parametrized by the mean and variance

of µ as well as the mean of Σ, which is Ψ/(ν−n−1). Note that the variance and covariance of

the inverse Wishart distribution are

var(Σi j) =
(β+1)Ψ2

i j +(β−1)ΨiiΨ j j

β(β−1)2(β−3)

cov(Σi j,Σkl) =
2Ψi jΨkl +(β−1)(ΨikΨ jl +ΨilΨk j)

β(β−1)2(β−3)
,

where β = ν−n.3

Sampling from the posterior distribution p1(µ,Σ |X) for the NIIW choice of prior can be4

accomplished with a Gibbs sampler:5

1. Pick any starting value (µ0,Σ0). Now suppose that the algorithm has been run for m−16

steps yielding the values (µ0,Σ0),(µ1,Σ1), . . . ,(µm−1,Σm−1).7

2. Sample µm from the conditional distribution p(µ |Σm−1,X), which is multivariate Normal:8

µ |Σ,X ∼N
(
Bλ+(1−B)X̄ ,(1−B) 1

N Σ
)
,9

where X̄ = 1
N ∑

N
i=1 Xi and B = 1

N Σ(V + 1
N Σ)−1.10

3. Sample Σm from the conditional distribution p(Σ |µm,X), which is inverse Wishart:11

Σ |µ,X ∼W
(
N(µ− X̄)(µ− X̄)′+S+Ψ,N +ν

)
,12
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where S = ∑
n
i=1(Xi− X̄)(Xi− X̄)′. It is standard practice to simulate draws from an inverse1

Wishart distribution by way of Bartlett’s decomposition (e.g., Mardia et al., 1979).2

4. We have now produced a sample (µm,Σm) which is dependent on the previous one. Repeat3

steps 2 and 3 for M iterations and discard e.g., the first 10%. Although they are correlated,4

the samples obtained by this Markov chain Monte Carlo (MCMC) algorithm have all the5

properties of an iid sample from p1(µ,Σ |X) as long as M is large enough.6

C.2. Dependent µ and Σ. Another useful prior specification for µ and Σ is

Σ∼W −1(Ψ,ν)

µ |Σ∼N (λ,κ−1
Σ).

This distribution is commonly referred to as a Normal Inverse Wishart (NIW) and we label it7

π2(µ,Σ). In this case, the prior mean and variance of µ are8

E[µ] = λ, var(µ) =
Ψ

κ(β−1)
.9

However, even though µ and Σ are a priori dependent they are uncorrelated: cov(µi,Σ jk) = 0.10

Under the NIW prior specification, the posterior distribution p2(µ,Σ |X) is also NIW:

Σ |X ∼W −1
(

Ψ+S+
Nκ

N +κ
(X̄−λ)(X̄−λ)′,N +ν

)
µ |Σ,X ∼N

(
NX̄ +κλ

N +κ
,(N +κ)−1

Σ

)
.

The primary advantage of the NIW prior over the one with independent µ and Σ is that it admits a11
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Monte Carlo algorithm producing iid samples from the posterior distribution p2(µ,Σ |X). That is,1

we can draw M iid samples Σ1, . . . ,ΣM from the inverse Wishart distribution, and for each value2

of Σm, we then draw µm from the appropriate Normal.3

C.3. Noninformative Priors. An interesting connection between the NIW and NIIW priors4

occurs by letting κ→ 0 in the former and V → ∞ in the latter. The limiting distribution is a5

so-called Lebesgue or “flat” prior on µ: π(µ) ∝ 1. This is not a proper probability distribution in6

the sense that
∫

π(µ)dµ = ∞. However, the posterior distributions pi(µ,Σ |X), i = 1,2 are both7

proper and in fact one and the same NIW:8

Σ |X ∼W −1 (Ψ+S,N +ν−1)

µ |Σ,X ∼N (X̄ ,Σ/N) .

(C.1)9

It is possible to take this one step further by specifying a noninformative prior for Σ,10

π(Σ |µ) ∝ |Σ|−(ν+n+1)/2. This is proportional to an inverse Wishart distribution with Ψ = 0. This11

is the only scale-invariant prior on Σ in the sense that if Ω = AΣA′, then π(Ω) ∝ |Ω|−(ν+n+1)/2.12

Using the moment formulas of the NIW distribution, it is easy to check that settting ν = n+113

in (C.1) with Ψ = 0 ensures that the posterior means of µ and Σ coincide with their usual14

frequentist estimates: E[µ |X ] = X̄ and E[Σ |X ] = S/(N−1).15

C.4. Non-Conjugate Priors. The use of the Wishart distribution in the prior specifications16

above greatly simplifies posterior calculations. However, the Wishart distribution imposes certain17

undesirable constraints on the elements of Σ (e.g., Gelman and Hill, 2006). Several alternatives18

allowing greater modeling flexibility at the expense of computational tractability are available in19
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the statistical literature, for instance: Leonard and Hsu (1992); Barnard et al. (2000); Liechty et al.1

(2004); OMalley and Zaslavsky (2008); Huang and Wand (2013).2

While each of these priors has its own merit, differences in prior specification diminish in3

significance as the sample size becomes large. To investigate the impact of the prior on inferential4

results, we used the point estimates X̄ and S/(N−1) from the fish data (see Supplementary5

Material for raw data) as the true values of µ and Σ to simulate N = 70 iid multivariate Normals6

(the actual sample size for each species). Posterior parameter estimates from the default prior are7

plotted with their true values in Figure C1 for the Arctic Cisco data. For this particular simulation,8

the posterior means are quite close to the true parameter values.9

For a more in-depth evaluation of the default prior, 1000 datasets X1, . . . ,X1000 of size N = 7010

were simulated from the Arctic Cisco parameter values. For each parameter θ ∈ {µi,Σi j}, two11

metrics were computed. The first is the (relative) root mean-square error (RMSE):12

RMSE(θ) =

√√√√ 1
1000

1000

∑
i=1

(θ̂i−θ)2

θ2 ,13

where θ̂i is the posterior mean of θ for dataset i. Results are shown in Table C1. The second14

metric is the true coverage of the posterior 95% credible intervals:15

COV(θ) =
1

1000

1000

∑
i=1

δi, δi =


1 θ ∈ {Li,Ui},

0 θ /∈ {Li,Ui},
16

where Li and Ui are the 2.5% and 97.5% quantiles of p(θ |Xi).17

The coverage probabilities of the 95% credible intervals out of the 200 replications for each18

parameter are given in Table C2. Nearly identical results for the other three species of fish indicate19
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that the default noninformative prior described in Section C.3 is adequate for a sample size of1

N = 70 with the given sets of true parameter values. Practitioners are encouraged to carefully2

consider their choice of prior when sample sizes are low and/or number of dimensions is high.

TABLE C1: Relative RSME (×100%) over 1000 simulated datasets from the Arctic Cisco param-

eters values.

Σ

µ δ15N δ13C δ34S
δ15N δ13C δ34S δ15N 2.07 3.79 4.91
0.768 0.539 1.02 δ13C 3.79 3.34 8.74

δ34S 4.91 8.74 4.57

3

TABLE C2: True coverage of 95% credible intervals for 1000 simulated datasets from the Arctic

Cisco parameters values.

Σ

µ δ15N δ13C δ34S
δ15N δ13C δ34S δ15N 94.4 95.1 93.1
94.7 95.9 94.6 δ13C 95.1 94.6 93.5

δ34S 93.1 93.5 94.4
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FIG. C1: Posterior parameter distribution with the default noninformative prior for a simulated

data from the Arctic Cisco parameter values. The blue lines correspond to posterior means and the

red lines are the true parameter values.
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