- Heidi Swanson, Martin Lysy, Michael Power, Ashley Stasko, Jim Johnson, and James Reist.
- ² 2014. A new probabilistic method for quantifying n-dimensional ecological niches and niche
- ³ overlap. *Ecology*
- 4 APPENDICES
- ⁵ Appendix C. Sampling algorithms for Bayesian posteriors and discussion of posteriors.

APPENDIX C. SAMPLING ALGORITHMS FOR BAYESIAN POSTERIORS AND DISCUSSION OF

2 PRIORS

Let $X = (X_1, ..., X_N)$ be N iid observations of a multivariate Normal distribution,

$$_{4} \qquad \qquad X_{i} = (X_{i1}, \ldots, X_{iN}) \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \Sigma),$$

s with unknown μ and Σ to be estimated from the data. Here we provide two specifications of the

⁶ prior distribution $\pi(\mu, \Sigma)$ which lead to simple and effective sampling algorithms for the posterior

⁷ distribution $p(\mu, \Sigma | X)$.

C.1. Independent μ and Σ . It is possible to take this one step further by specifying a noninformative prior for Σ : $\pi(\Sigma) = \pi(\Sigma | \mu) \propto |\Sigma|^{(\nu+n+1)/2}$. The following prior assumes that, in the absence of any data, knowing μ has no bearing on the uncertainty about Σ and vice versa. In distributional terms, it is written as

$$\mu \sim \mathcal{N}(\lambda, V)$$

 $\Sigma \mid \mu \sim \mathcal{W}^{-1}(\Psi, \mathbf{v}),$

⁸ meaning that μ is *a priori* Normally distributed independently of Σ , which in turn follows an *n*

⁹ dimensional inverse Wishart distribution:

10

$$f(\Sigma | \Psi, \mathbf{v}) = \frac{|\Psi|^{\mathbf{v}/2}}{2^{\mathbf{v}n/2}\Gamma_n(\frac{\nu}{2})} |\Sigma|^{-(\mathbf{v}+n+1)/2} \exp\left\{-\frac{1}{2} \operatorname{tr}(\Psi \Sigma^{-1})\right\},$$

1 where

2

$$\Gamma_n(a) = \pi^{n(n-1)/4} \prod_{i=1}^n \Gamma\left(a + \frac{1-i}{2}\right)$$

is the multivariate gamma function. We shall refer to this prior as the Normal Independent Inverse Wishart (NIIW) prior and denote it $\pi_1(\mu, \Sigma)$. This prior is parametrized by the mean and variance of μ as well as the mean of Σ , which is $\Psi/(\nu - n - 1)$. Note that the variance and covariance of the inverse Wishart distribution are

$$\operatorname{var}(\Sigma_{ij}) = \frac{(\beta+1)\Psi_{ij}^2 + (\beta-1)\Psi_{ii}\Psi_{jj}}{\beta(\beta-1)^2(\beta-3)}$$
$$\operatorname{cov}(\Sigma_{ij}, \Sigma_{kl}) = \frac{2\Psi_{ij}\Psi_{kl} + (\beta-1)(\Psi_{ik}\Psi_{jl} + \Psi_{il}\Psi_{kj})}{\beta(\beta-1)^2(\beta-3)},$$

³ where $\beta = \nu - n$.

Sampling from the posterior distribution $p_1(\mu, \Sigma | X)$ for the NIIW choice of prior can be accomplished with a Gibbs sampler:

6 1. Pick any starting value (μ_0, Σ_0) . Now suppose that the algorithm has been run for m - 17 steps yielding the values $(\mu_0, \Sigma_0), (\mu_1, \Sigma_1), \dots, (\mu_{m-1}, \Sigma_{m-1})$.

⁸ 2. Sample μ_m from the conditional distribution $p(\mu | \Sigma_{m-1}, X)$, which is multivariate Normal:

9
$$\mu | \Sigma, X \sim \mathcal{N} \left(B \lambda + (1 - B) \overline{X}, (1 - B) \frac{1}{N} \Sigma \right),$$

where $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ and $B = \frac{1}{N} \sum (V + \frac{1}{N} \Sigma)^{-1}$.

3. Sample Σ_m from the conditional distribution $p(\Sigma | \mu_m, X)$, which is inverse Wishart:

$$\Sigma \mid \mu, X \sim \mathcal{W} \left(N(\mu - \bar{X})(\mu - \bar{X})' + S + \Psi, N + \nu
ight),$$

1		where $S = \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$. It is standard practice to simulate draws from an inverse
2		Wishart distribution by way of Bartlett's decomposition (e.g., Mardia et al., 1979).
3	4.	We have now produced a sample (μ_m, Σ_m) which is dependent on the previous one. Repeat
4		steps 2 and 3 for M iterations and discard e.g., the first 10%. Although they are correlated,
5		the samples obtained by this Markov chain Monte Carlo (MCMC) algorithm have all the
6		properties of an iid sample from $p_1(\mu, \Sigma X)$ as long as <i>M</i> is large enough.

C.2. Dependent μ and Σ . Another useful prior specification for μ and Σ is

9

$$\begin{split} \boldsymbol{\Sigma} &\sim \mathcal{W}^{-1}(\boldsymbol{\Psi}, \boldsymbol{\nu}) \\ \mu | \boldsymbol{\Sigma} &\sim \mathcal{N}(\boldsymbol{\lambda}, \boldsymbol{\kappa}^{-1}\boldsymbol{\Sigma}). \end{split}$$

⁷ This distribution is commonly referred to as a Normal Inverse Wishart (NIW) and we label it ⁸ $\pi_2(\mu, \Sigma)$. In this case, the prior mean and variance of μ are

$$E[\mu] = \lambda, \quad \operatorname{var}(\mu) = \frac{\Psi}{\kappa(\beta - 1)}.$$

¹⁰ However, even though μ and Σ are *a priori* dependent they are uncorrelated: $cov(\mu_i, \Sigma_{jk}) = 0$.

Under the NIW prior specification, the posterior distribution $p_2(\mu, \Sigma | X)$ is also NIW:

$$\begin{split} \Sigma | X &\sim \mathcal{W}^{-1} \left(\Psi + S + \frac{N\kappa}{N+\kappa} (\bar{X} - \lambda) (\bar{X} - \lambda)', N + \nu \right) \\ \mu | \Sigma, X &\sim \mathcal{H} \left(\frac{N\bar{X} + \kappa\lambda}{N+\kappa}, (N+\kappa)^{-1} \Sigma \right). \end{split}$$

¹¹ The primary advantage of the NIW prior over the one with independent μ and Σ is that it admits a

Monte Carlo algorithm producing iid samples from the posterior distribution p₂(μ,Σ|X). That is,
we can draw *M* iid samples Σ₁,...,Σ_M from the inverse Wishart distribution, and for each value
of Σ_m, we then draw μ_m from the appropriate Normal.

C.3. Noninformative Priors. An interesting connection between the NIW and NIIW priors occurs by letting $\kappa \to 0$ in the former and $V \to \infty$ in the latter. The limiting distribution is a so-called Lebesgue or "flat" prior on μ : $\pi(\mu) \propto 1$. This is not a proper probability distribution in the sense that $\int \pi(\mu) d\mu = \infty$. However, the posterior distributions $p_i(\mu, \Sigma | X)$, i = 1, 2 are both proper and in fact one and the same NIW:

$$\Sigma | X \sim \mathcal{W}^{-1} (\Psi + S, N + \nu - 1)$$

$$\mu | \Sigma, X \sim \mathcal{N} (\bar{X}, \Sigma/N).$$
(C.1)

It is possible to take this one step further by specifying a noninformative prior for Σ , $\pi(\Sigma | \mu) \propto |\Sigma|^{-(\nu+n+1)/2}$. This is proportional to an inverse Wishart distribution with $\Psi = 0$. This is the only scale-invariant prior on Σ in the sense that if $\Omega = A\Sigma A'$, then $\pi(\Omega) \propto |\Omega|^{-(\nu+n+1)/2}$. Using the moment formulas of the NIW distribution, it is easy to check that setting $\nu = n+1$ in (C.1) with $\Psi = 0$ ensures that the posterior means of μ and Σ coincide with their usual frequentist estimates: $E[\mu|X] = \bar{X}$ and $E[\Sigma|X] = S/(N-1)$.

9

¹⁶ C.4. Non-Conjugate Priors. The use of the Wishart distribution in the prior specifications ¹⁷ above greatly simplifies posterior calculations. However, the Wishart distribution imposes certain ¹⁸ undesirable constraints on the elements of Σ (e.g., Gelman and Hill, 2006). Several alternatives ¹⁹ allowing greater modeling flexibility at the expense of computational tractability are available in the statistical literature, for instance: Leonard and Hsu (1992); Barnard et al. (2000); Liechty et al.
 (2004); OMalley and Zaslavsky (2008); Huang and Wand (2013).

³ While each of these priors has its own merit, differences in prior specification diminish in ⁴ significance as the sample size becomes large. To investigate the impact of the prior on inferential ⁵ results, we used the point estimates \bar{X} and S/(N-1) from the fish data (see Supplementary ⁶ Material for raw data) as the true values of μ and Σ to simulate N = 70 iid multivariate Normals ⁷ (the actual sample size for each species). Posterior parameter estimates from the default prior are ⁸ plotted with their true values in Figure C1 for the Arctic Cisco data. For this particular simulation, ⁹ the posterior means are quite close to the true parameter values.

For a more in-depth evaluation of the default prior, 1000 datasets $X_1, ..., X_{1000}$ of size N = 70were simulated from the Arctic Cisco parameter values. For each parameter $\theta \in {\mu_i, \Sigma_{ij}}$, two metrics were computed. The first is the (relative) root mean-square error (RMSE):

$$\text{RMSE}(\boldsymbol{\theta}) = \sqrt{\frac{1}{1000} \sum_{i=1}^{1000} \frac{(\hat{\boldsymbol{\theta}}_i - \boldsymbol{\theta})^2}{\boldsymbol{\theta}^2}},$$

13

where $\hat{\theta}_i$ is the posterior mean of θ for dataset *i*. Results are shown in Table C1. The second metric is the true coverage of the posterior 95% credible intervals:

16
$$\operatorname{COV}(\theta) = \frac{1}{1000} \sum_{i=1}^{1000} \delta_i, \qquad \delta_i = \begin{cases} 1 & \theta \in \{L_i, U_i\}, \\ 0 & \theta \notin \{L_i, U_i\}, \end{cases}$$

where L_i and U_i are the 2.5% and 97.5% quantiles of $p(\theta | X_i)$.

The coverage probabilities of the 95% credible intervals out of the 200 replications for each parameter are given in Table C2. Nearly identical results for the other three species of fish indicate

- that the default noninformative prior described in Section C.3 is adequate for a sample size of
- $_{2}$ N = 70 with the given sets of true parameter values. Practitioners are encouraged to carefully consider their choice of prior when sample sizes are low and/or number of dimensions is high.

TABLE C1: Relative RSME ($\times 100\%$) over 1000 simulated datasets from the Arctic Cisco parameters values.

	Σ			
μ		$\delta^{15}N$	δ ¹³ C	$\delta^{34}S$
$\delta^{15}N$ $\delta^{13}C$ $\delta^{34}S$	$\delta^{15}N$	2.07	3.79	4.91
0.768 0.539 1.02	$\delta^{13}C$	3.79	3.34	8.74
	$\delta^{34}S$	4.91	8.74	4.57

TABLE C2: True coverage of 95% credible intervals for 1000 simulated datasets from the ArcticCisco parameters values.

3

				Σ				
	μ			$\delta^{15}N$	δ ¹³ C	$\delta^{34}S$		
$\delta^{15}N$	$\delta^{13}C$	$\delta^{34}S$	$\delta^{15}N$	94.4	95.1	93.1		
94.7	95.9	94.6	$\delta^{13}C$	95.1	94.6	93.5		
			δ^{34} S	93.1	93.5	94.4		

FIG. C1: Posterior parameter distribution with the default noninformative prior for a simulated data from the Arctic Cisco parameter values. The blue lines correspond to posterior means and the red lines are the true parameter values.

REFERENCES. 1

Barnard, J., McCulloch, R., and Meng, X.L. (2000). Modeling covariance matrices in terms of 2 standard deviations and correlations, with application to shrinkage. *Statistica Sinica*, 10(4): 3

1281–1312. 4

Gelman, A. and Hill, J. (2006). Data analysis using regression and multilevel/hierarchical 5

models. Cambridge University Press, New York. 6

Huang, A. and Wand, M.P. (2013). Simple marginally noninformative prior distributions for 7 covariance matrices. Bayesian Analysis, 8(2): 439-452. 8

Leonard, T. and Hsu, J.S.J. (1992). Bayesian inference for a covariance matrix. The Annals of 9 Statistics, 20(4): 1669–1696. 10

Liechty, J.C., Liechty, M.W., and Müller, P. (2004). Bayesian correlation estimation. Biometrika, 11 91(1): 1-14. 12

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979). Multivariate Analysis. Probability and 13 mathematical statistics. Academic Press, London. 14

OMalley, A.J. and Zaslavsky, A.M. (2008). Domain-level covariance analysis for multilevel 15 survey data with structured nonresponse. Journal of the American Statistical Association,

103(484): 1405–1418. 17

16

9