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Appendix A. Computation of niche regions.



1

APPENDIX A: COMPUTATION OF NICHE REGIONS.
Suppose that X = (X,...,X,) is an n-dimensional isotope distribution with joint pdf f(x). We

have defined the niche region to be

Ng = {x: f(x) > C}, (A1)

where C is chosen such that P(X € Nr) = 95%. This is in fact the smallest region occupying 95%
of the probability space (e.g., Box and Tiao, 1973; Wei and Tanner, 1990; Chen and Shao, 1999).

Figure A1l illustrates this for a one-dimensional isotope X.

For a symmetric distribution (left panel), Nr simply consists of the interval between the 2.5%
and 97.5% quantiles of the distribution. For skewed distributions (middle panel), however, this is
not the case. In fact, for bimodal distributions (right panel) the niche region can even be disjoint.
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FI1G. Al: Probabilistic 95% niche region for various univariate distributions. These are the inter-
vals or collection of intervals highlighted in red. For symmetric distributions, these coincide with
the 2.5% and 97.5% quantiles which are depicted with crosses. In each case the red interval(s)

contain(s) the smallest region covering 95% of the probability distribution.

Of particular interest here is the case where X = (X1, ...,X,) ~ N (u,X) is an n-dimensional



> multivariate Normal isotope distribution. The joint pdf of X is

; fx) = r) 2z exp { L (x— )= x—u)},

+ which is a constant in x for fixed Q(x) = (x —u)'E~!(x — u) = g. Since increasing Q(x) results in

s smaller values of f(x), the niche region for Normal data is

6 Nr={x: (x—p)T  (x—p) <C}. (A.2)

7 Upon rearranging terms, Nr can be written as the quadratic inequality

I M:

n n
8 NR—{X—()C], Zaijxixj+2bixi+d<C}, (A.3)

j=1 i=1

o although the canonical form in A.2 is computationally simpler to use for the niche overlap

o calculation described in Appendix B.

1 In order to determine the value of C in A.2, we may utilize the fact that

n
2 X-wrlX—u=27= Zz,?,

s where Z= (Z1,...,Z,) =L V2(X —u) ~ N(0,1). In other words, Q(X) is the sum of the

squares of n iid A(0, 1) random variables, such that

>

s oX)=Y 7
i=1

1 Thus, for a 95% niche region we require that P(Q(x) < C) = .95, a value which can be
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determined by the R command gchisqg(p = 0.95, df = n).
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