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APPENDIX A: COMPUTATION OF NICHE REGIONS.1

Suppose that X = (X1, . . . ,Xn) is an n-dimensional isotope distribution with joint pdf f (x). We2

have defined the niche region to be3

NR = {x : f (x)>C}, (A.1)4

where C is chosen such that P(X ∈ NR) = 95%. This is in fact the smallest region occupying 95%5

of the probability space (e.g., Box and Tiao, 1973; Wei and Tanner, 1990; Chen and Shao, 1999).6

Figure A1 illustrates this for a one-dimensional isotope X .7

For a symmetric distribution (left panel), NR simply consists of the interval between the 2.5%8

and 97.5% quantiles of the distribution. For skewed distributions (middle panel), however, this is9

not the case. In fact, for bimodal distributions (right panel) the niche region can even be disjoint.
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FIG. A1: Probabilistic 95% niche region for various univariate distributions. These are the inter-

vals or collection of intervals highlighted in red. For symmetric distributions, these coincide with

the 2.5% and 97.5% quantiles which are depicted with crosses. In each case the red interval(s)

contain(s) the smallest region covering 95% of the probability distribution.
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Of particular interest here is the case where X = (X1, . . . ,Xn)∼N (µ,Σ) is an n-dimensional1
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multivariate Normal isotope distribution. The joint pdf of X is2

f (x) = (2π)−n/2 |Σ|−1/2 exp
{
−1

2(x−µ)′Σ−1(x−µ)
}
,3

which is a constant in x for fixed Q(x) = (x−µ)′Σ−1(x−µ) = q. Since increasing Q(x) results in4

smaller values of f (x), the niche region for Normal data is5

NR =
{

x : (x−µ)′Σ−1(x−µ)<C
}
. (A.2)6

Upon rearranging terms, NR can be written as the quadratic inequality7

NR =

{
x = (x1, . . . ,xn) :

n

∑
i=1

n

∑
j=1

ai jxix j +
n

∑
i=1

bixi +d <C

}
, (A.3)8

although the canonical form in A.2 is computationally simpler to use for the niche overlap9

calculation described in Appendix B.10

In order to determine the value of C in A.2, we may utilize the fact that11

(X−µ)′Σ−1(X−µ) = Z′Z =
n

∑
i=1

Z2
i ,12

where Z = (Z1, . . . ,Zn)
′ = Σ−1/2(X−µ)∼N (0, I). In other words, Q(X) is the sum of the13

squares of n iid N (0,1) random variables, such that14

Q(X) =
n

∑
i=1

Z2
i ∼ χ

2
(n).15

Thus, for a 95% niche region we require that P(Q(x)<C) = .95, a value which can be1

3



determined by the R command qchisq(p = 0.95, df = n).2
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