Supplemental Appendix A: Data Sources, prior specification, further methods.

Understanding uncertainty in temperature effects on vector-borne disease: A Bayesian approach

Leah R. Johnson* ${ }^{* 1,2}$, Tal Ben-Horin ${ }^{3,4}$, Kevin D. Lafferty ${ }^{5,6}$, Amy McNally ${ }^{7}$, Erin Mordecai ${ }^{3,8}$, Krijn P. Paaijmans ${ }^{9}$, Samraat Pawar ${ }^{1,10}$, Sadie J. Ryan ${ }^{11,12,13}$

1-Ecology and Evolution, University of Chicago;
2-Integrative Biology, University of South Florida;
3-Ecology, Evolution, and Marine Biology, UC Santa Barbara;
4-Marine and Coastal Sciences, Rutgers University;
5-Western Ecological Research Center, US Geological Survey;
6-Marine Science Institute, UC Santa Barbara;
7-Geography Department, UC Santa Barbara;
8-Biology, UNC Chapel Hill;
9-Barcelona Centre for International Health Research, Universitat de Barcelona;
10-Department of Life Sciences, Imperial College;
11- Environmental and Forest Biology, SUNY ESF
12-Center for Global Health and Translational Science, SUNY UMU;
13 - School of Life Sciences College of Agriculture, Engineering, and Science, University of KwaZulu-Natal, Durban, South Africa
A. 1 Data Sources

Parameter	Definition	prior species	prior sources	main species	main sources
a	biting rate	Aedes albopictus	Calado and Navarro-Silva [2002], Delatte et al. [2009]	An. pseudopunctipennis	Lardeux et al. [2008]
MDR	mosquito development rate	An. gambiae, An. quadrimaculatus, Aedes triseriatus, Aedes aegypti, An. superpictus	Jepson et al. [1947], Love and Whelchel [1957], Jalil [1972], Joshi et al. [1996], Briegel et al. [2001], Aytekin et al. [2009]	An. gambiae	Bayoh and Lindsay [2003]
$p_{E A}$	egg to adult survival	An. quadrimaculatus, Aedes triseriatus, Aedes albopictus	Love and Whelchel [1957], Jalil [1972], Delatte et al. [2009]	An. gambiae	Bayoh and Lindsay [2003]
EFD	fecundity	Aedes aegypti	Joshi et al. [1996]	Aedes albopictus	Calado and Navarro-Silva [2002], Delatte et al. [2009]
μ	mosquito mortality rate	Aedes aegypti, An. superpictus	Joshi et al. [1996], Aytekin et al. [2009] Costantini et al 1996, Gary \& Foster 2004, Impoinvil et al 2004, Midega et al 2007, Okech et al 2003	An. gambiae	Bayoh [2001]
$b c$	vector competence	P. relictum in Culex quinquefasciatus	LaPointe et al. [2010]	P. vivax in An. quadrimaculatus	Stratman-Thomas [1940]
PDR	parasite development rate	P. vivax in An. quadrimaculatus, P. falciparum in An. gambiae	Stratman-Thomas [1940], Cambournac [1942] (see Boyd [1949])	P. falciparum in An. gambiae, An. culicifacies, An. stephensi, An. quadrimaculatus, An. atroparvus	Boyd and Stratman-Thomas [1933], Knowles and Basu [1943], Siddons [1944], Shute and Maryon [1952], Vaughan et al. [1992], Eling et al. [2001]

Table A.1: Sources of data for each component of R_{0}, including which species were used, for both the prior and main data sets.

A. 2 Functional Forms, and default priors

Name	Functional form	Default Priors	Component
Brière	$\begin{cases}c T\left(T-T_{0}\right) \sqrt{\left(T_{m}-T\right)} & \text { if } T_{0}<T<T_{m} \\ 0 & \text { otherwise }\end{cases}$	$\begin{aligned} T_{0} & \sim \operatorname{Unif}(0,24) \\ T_{m} & \sim \operatorname{Unif}(25,45) \\ c & \sim \operatorname{Gamma}(1,10) \end{aligned}$	$\begin{aligned} & a, \quad \mathrm{MDR}, \\ & \mathrm{PDR},(b c) \end{aligned}$
Quadratic (ccd)	$\begin{cases}a\left(T-T_{0}\right)\left(T-T_{m}\right) & \text { if } T_{0}<T<T_{m} \\ 0 & \text { otherwise }\end{cases}$	$\begin{aligned} T_{0} & \sim \operatorname{Unif}(0,24) \\ T_{m} & \sim \operatorname{Unif}(25,45) \\ -a & \sim \operatorname{Gamma}(1,1) \end{aligned}$	$p_{E A}$, EFD, bc
Quadratic (ccu)	$\begin{cases}a T^{2}+b T+c & \text { if } a T^{2}+b T+c>0 \\ 0 & \text { otherwise }\end{cases}$	$\begin{aligned} a & \sim \operatorname{Gamma}(2,2) \\ -b & \sim \operatorname{Gamma}(1,1) \\ c & \sim \operatorname{Gamma}(2,2) \end{aligned}$	μ

Table A.2: Functional forms, default priors, and the components which assumed each form; ccd: concave down, ccu: concave up. T_{0} corresponds to the lower temperature at which a function reaches zero, and T_{m} to the higher temperature at which the function goes to zero. (bc) indicates that vector competence was fit using a Brière function for comparison, but this was not used for the main analysis.

A. 3 Informative Priors

After fitting the functional responses to the "prior data", the posterior distributions for each parameter describing the functions were used to obtain informative priors for use with the main data sources. The procedure used was based on a simple moment matching approximation to the posterior distributions, with inflated variances (typically doubling the variance). Moment matching is an approach for estimating a distribution from data by using the calculation of important moments from a set of samples (e.g., the mean and variance) and equating these with the parameters or function of parameters for a particular distribution. This was followed by visual inspection of the posterior distributions of parameters overlaid by
the informative prior to confirm that the shape of the informative prior looked like the posterior (especially for cases where the parameter is bounded). In some cases the distributions appeared to be approximately normal, but were bounded due to the nature of the default parameters, and so truncated distributions were used for the priors. For the quadratic curve, the prior for the c parameter was usually chosen to be uninformative even in the second step, as bounding all 3 parameters resulted in poor convergence and mixing.

Comp.	B / Q	Informative Priors
a	B	$T_{0} \sim \operatorname{Unif}(0,24), T_{m}=25+t_{m}, t_{m} \sim \operatorname{Gamma}(8.45,0.65) T(, 20), c \sim \operatorname{Exp}(200)$
MDR	B	$T_{0} \sim \mathrm{~N}\left(15,9^{2}\right) T(0,24), T_{m} \sim \mathrm{~N}\left(37,2^{2}\right) T(25,45), c \sim \operatorname{Exp}(1000)$
PDR	B	$T_{0} \sim \mathrm{~N}\left(14,3.5^{2}\right), T_{m}=31+t_{m}, t_{m} \sim \operatorname{Gamma}(14.7,3.1), c \sim \operatorname{Exp}(100)$
$p_{E A}$	Q	$T_{0} \sim \mathrm{~N}\left(12,5^{2}\right) T(0,24), T_{m} \sim \mathrm{~N}\left(36,3^{2}\right) T(25,45),-a \sim \operatorname{Exp}(100)$
EFD	Q	$T_{0} \sim \mathrm{~N}\left(17,3^{2}\right), T_{m} \sim \mathrm{~N}\left(33,3^{2}\right),-a \sim \operatorname{Gamma}(4,13)$
μ	Q	$a \sim \mathrm{~N}\left(2.3,0.3^{2}\right),-b \sim \mathrm{~N}\left(0.21,0.02^{2}\right), c \sim \operatorname{Gamma}(2,2)$
$b c$	Q	$T_{0} \sim \operatorname{Gamma}(128,8), T_{m}=30+t_{m}, t_{m} \sim \operatorname{Gamma}(42.25,3.25),-a \sim \operatorname{Exp}(100)$
	B	$T_{0} \sim \operatorname{Gamma}(26,2), T_{m}=30+t_{m}, t_{m} \sim \operatorname{Gamma}(10,1) T(, 15), c \sim \operatorname{Exp}(100)$

Table A.3: Informative priors used for the final analysis of each component. B/Q indicates if the component was modelled with a quadratic or Brière function, as specified in Table A.2. $T(a, b)$ indicates that a distribution is truncated below or above a or b, respectively. If truncation occurs only at the upper end, the notation used is $T(, b)$. This notation is taken from JAGS. For definitions of each component see Table A. 1 and the main text.

A. 4 MCMC in JAGS

All of the MCMC simulations were implemented in JAGS/rjags [Plummer, 2013]. The basics of the MCMC algorithm can be found elsewhere [e.g. Clark, 2007]. Here we give a few details of our implementation to compliment the example code that can be found in the supplementary files. For each component, we started five independent chains, and initialzed the change with 5000 adaptive samples. After obtaining these samples, we confirmed convergence, or, if it had not converged, increased this initial number of adaptive samples until convergence. We then collected 5000 samples after convergence for each of the five chains, for a total of

25000 samples. These full 25000 samples were used to calculate the posterior distributions for each individual component. For the full analysis (i.e., for the HDP intervals for R_{0}, and for uncertainty and sensitivity analyses) we thinned the samples, taking every 5th sample, for computational tractability.

A. 5 Equations and methods for sensitivity analysis of R_{0}

Recall that we define R_{0} as

$$
\begin{equation*}
R_{0}=\sqrt{\frac{M}{N r} \frac{a^{2} b c e^{-\mu E I P}}{\mu}} \tag{A.1}
\end{equation*}
$$

We used a local sensitivity analysis to examine how R_{0} depends on temperature, and each component. The full derivative of R_{0} with respect to temperature can be found using the chain rule:

$$
\begin{align*}
\frac{d R_{0}}{d t}= & \frac{d R_{0}}{d a} \frac{d a}{d t}+\frac{d R_{0}}{d(b c)} \frac{d(b c)}{d t}+\frac{d R_{0}}{d E F D} \frac{d E F D}{d t}+\frac{d R_{0}}{d(e 2 a)} \frac{d(e 2 a)}{d t} \\
& +\frac{d R_{0}}{d M D R} \frac{d M D R}{d t}+\frac{d R_{0}}{d \mu} \frac{d \mu}{d t}+\frac{d R_{0}}{d P D R} \frac{d P D R}{d t} . \tag{A.2}
\end{align*}
$$

The derivatives of R_{0} with respect to each component are calculated from Equation A.1:

$$
\begin{align*}
\frac{d R_{0}}{d a} & =\frac{R_{0}}{a} \tag{A.3}\\
\frac{d R_{0}}{d(b c)} & =\frac{R_{0}}{2(b c)} \tag{A.4}\\
\frac{d R_{0}}{d E F D} & =\frac{R_{0}}{2 E F D} \tag{A.5}\\
\frac{d R_{0}}{d(e 2 a)} & =\frac{R_{0}}{2(e 2 a)} \tag{A.6}\\
\frac{d R_{0}}{d M D R} & =\frac{R_{0}}{2 M D R} \tag{A.7}\\
\frac{d R_{0}}{d \mu} & =\frac{R_{0}}{2}\left(\frac{-3}{\mu}-\frac{1}{P D R}\right) \tag{A.8}\\
\frac{d R_{0}}{d P D R} & =\frac{R_{0} \mu}{2(P D R)^{2}} \tag{A.9}
\end{align*}
$$

The derivatives of each component with respect to temperature depends on the particular temperature response chosen (Table A.2). For the basic quadratic response (for EDF):

$$
\frac{d(\cdot)}{d T}= \begin{cases}a\left(2 T-T_{0}-T_{m}\right) & \text { if } T_{0}<T<T_{m} \tag{A.10}\\ 0 & \text { otherwise }\end{cases}
$$

which is further modified for the responses truncated at 0 and 1 such that this derivative must be zero if $a\left(T-T_{0}\right)\left(T-T_{m}\right)>1$. For concave up responses (μ) :

$$
\frac{d(\cdot)}{d T}= \begin{cases}2 a T+b & \text { if } a T^{2}+b T+c>0 \tag{A.11}\\ 0 & \text { otherwise }\end{cases}
$$

Similarly, for the Brière function

$$
\frac{d(\cdot)}{d T}= \begin{cases}\left.c\left(-5 T^{2}+3 T T_{0}+4 T T_{m}-2 T_{0} T_{m}\right) /\left(2 \sqrt{(} T_{m}-T\right)\right) & \text { if } T_{0}<T<T_{m} \\ 0 & \text { otherwise }\end{cases}
$$

When fitting $b c$ with a Brière function, we must truncate this at 1 , i.e. the derivative is zero if $c T\left(T-T_{0}\right) \sqrt{\left(T_{m}-T\right)}>1$.

Combining the appropriate functions for each component thus gives the full derivative with respect to temperature for R_{0}. By plugging the posterior samples for each component into this formula we are able to obtain the full posterior distribution for $\frac{d R_{0}}{d t}$. That is, we obtain the $i^{\text {th }}$ posterior sample of R_{0} by plugging the $i^{\text {th }}$ posterior sample of each component's parameters into the formula. If we are interested in how the uncertainty in the $j^{\text {th }}$ component contributes to the overall uncertainty, we set all but the $j^{\text {th }}$ component to its mean response (i.e., we find the posterior mean of each component AND the posterior mean of the derivative of that component to temperature), and only plug in the posterior samples of the focal component. We can then calculate the width of the 95% highest posterior density (HPD) interval across temperatures, and compare the width of $\frac{d R_{0}}{d t}$ overall to its width when only one component is allowed to vary. Due to the nature of the numerical approximation (and the fact that the means of the components are NOT the same as any of the individual trajectories), it is possible that at the edges of the range of R_{0}, the calculated width of the full posterior of $\frac{d R_{0}}{d t}$ can be numerically zero before the HPD interval of the single component interval is zero. Thus, we add a very small constant, ϵ, to the denominator to keep the ratio from artificially going to infinity.

References

S. Aytekin, A. M. Aytekin, and B. Alten. Effect of different larval rearing temperatures on the productivity (Ro) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics. Journal of Vector Ecology, 34(1):32-42, 2009.
M. Bayoh and S. Lindsay. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (diptera: Culicidae). Bulletin of entomological research, 93(5):375-382, 2003.
M. N. Bayoh. Studies on the development and survival of Anopheles gambiae sensu stricto at various temperatures and relative humidities. PhD thesis, Durham University, 2001.
M. F. Boyd. Malariology: A comprehensive survey of all aspects of this group of diseases from a global standpoint, volume 2. Saunders, 1949.
M. F. Boyd and W. K. Stratman-Thomas. A note on the transmission of quartan malaria by Anopheles quadrimaculatus. The American Journal of Tropical Medicine and Hygiene, 1(3):265-271, 1933.
H. Briegel, I. Knusel, and S. E. Timmermann. Aedes aegypti: size, reserves, survival, and flight potential. Journal of Vector Ecology, 26:21-31, 2001.
D. C. Calado and M. A. Navarro-Silva. Influência da temperatura sobre a longevidade, fecundidade e atividade hematofágica de aedes (stegomyia) albopictus skuse, 1894 (diptera, culicidae) sob condições de laboratório. Revista Brasileira de Zoologia, 46:93-98, 2002.
F. J. C. Cambournac. Sobre a epidemiologia do sezonismo em Portugal. Soc. Ind. de Tipografia, Lda., Lisbon, 1942.
J. S. Clark. Models for Ecological Data. Princeton University Press, Princeton, NJ, 2007.
H. Delatte, G. Gimonneau, A. Triboire, and D. Fontenille. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the indian ocean. Journal of Medical Entomology, 46(1):33-41, 2009.
W. Eling, J. Hooghof, M. van de Vegte-Bolmer, R. Sauerwein, and G. Van Gemert. Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito. In Proceedings of the Section of Experimental and Applied Entomology - Netherlands Entomological Society, volume 12, pages 151-156, 2001.
M. Jalil. Effect of temperature on larval growth of Aedes triseriatus. Journal of economic entomology, 65 (2):625, 1972.
W. F. Jepson, A. Moutia, and C. Courtois. The Malaria Problem in Mauritius: the Bionomics Of Mauritian Anophelines. Bulletin of Entomological Research, 38(01):177-208, 1947.
V. Joshi, M. Singhi, and R. Chaudhary. Transovarial transmission of dengue 3 virus by Aedes aegypti . Transactions of the Royal Society of Tropical Medicine and Hygiene, 90(6):643-644, 1996.
R. Knowles and B. Basu. Laboratory studies on the infectivity of Anopheles stephensi. J Mal Inst India, 5: 1-29, 1943.
D. A. LaPointe, M. L. Goff, and C. T. Atkinson. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i. Journal of Parasitology, 96(2): 318-324, 2010.
F. Lardeux, R. Tejerina, V. Quispe, and T. Chavez. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malaria journal, 7(1):141, 2008.
G. Love and J. Whelchel. Lethal effects of high temperatures on the immature stages of Anopheles quadrimaculatus. Ecology, 38(4):570-576, 1957.
M. Plummer. rjags: Bayesian graphical models using MCMC, $2013 . \quad$ URL http://cran.r-project.org/web/packages/rjags/index.html. R package version 3.10.
P. Shute and M. Maryon. A study of human malaria oocysts as an aid to species diagnosis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46(3):275-292, 1952.
L. Siddons. Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies giles. J Mal Inst India, 5:375-388, 1944.
W. K. Stratman-Thomas. The influence of temperature on Plasmodium vivax. The American Journal of Tropical Medicine and Hygene, 20:703-715, 1940.
J. A. Vaughan, B. H. Noden, and J. C. Beier. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. The Journal of Parasitology, pages 716-724, 1992.

