
Appendix A: Derivation of equations 4 and 7. 

Deriving equations 4 and 7 requires some knowledge of ordinary differential equations, which many 
ecologists may not be familiar with. Therefore, we include a brief description here.  

Equation 4. We begin with: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏 + 𝑐𝑐      (A.1) 

because a in equation (1) is set to zero. One way of finding the function, p, in terms of t, that satisfies 
the above equation is to first define a new function q as, 

𝑞𝑞 = 𝑝𝑝 + 𝑐𝑐/𝑏𝑏       (A.2) 

Note that derivatives of p and q with respect to time are identical because neither c nor b varies with 
time. As a consequence, we can rewrite equation A.1 as, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏      (A.3) 

It can then be shown that the following equation for q satisfies A.3. 

𝑞𝑞(𝑡𝑡) = 𝑘𝑘𝑒𝑒𝑏𝑏𝑏𝑏      (A.4) 

where k is a constant. Reinserting this in equation A.2 and solving for p, we arrive at: 

𝑝𝑝(𝑡𝑡) = 𝑘𝑘𝑒𝑒𝑏𝑏𝑏𝑏 − 𝑐𝑐/𝑏𝑏      (A.5) 

 Substituting  𝑏𝑏 = −(𝛾𝛾 + 𝜀𝜀), and 𝑐𝑐 = 𝛾𝛾 we get.  

𝑝𝑝(𝑡𝑡) = 𝑘𝑘𝑒𝑒−(𝛾𝛾+𝜀𝜀)𝑡𝑡 + 𝛾𝛾
𝛾𝛾+𝜀𝜀

     (A.6) 

Note that (A.6) differs only from equation 4 in the manuscript in that we have applied the initial 
condition that 𝑝𝑝(0) = 0 and solved for 𝑘𝑘 = − 𝛾𝛾

𝛾𝛾+𝜀𝜀
.  

Modeling declines. Equation A.6 could also be used to describe the dynamics of decline. For 
example, if the underlying colonization and extinction rates change such that the initial 
occupancy, 𝑝𝑝𝑖𝑖, is greater than the equilibrium values implied by the new colonization and 
extinction rates, then the dynamics of the decline can be modelled simply by substituting 𝑘𝑘 =
𝑝𝑝𝑖𝑖 −

𝛾𝛾
𝛾𝛾+𝜀𝜀

 into equation A.6. Extending this to look at different scenarios for the transient 

dynamics of A and R during a decline in two environments is straightforward. 

 

 



Equation 7. We begin with the equation, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑝𝑝2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐      (A.7) 

with a<0, b>0 and c>0. Equation A.7 can be written in terms of its roots, 𝜆𝜆′ and 𝜆𝜆′′ as: 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑝𝑝 − 𝜆𝜆′)(𝑝𝑝 − 𝜆𝜆′′)      (A.8) 

which can be split into the following partial fractions:  

1
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑎𝑎−1( 𝐴𝐴

𝑝𝑝−𝜆𝜆′
+ 𝐵𝐵

𝑝𝑝−𝜆𝜆′′
)      (A.8) 

where 𝐴𝐴 = 1 (⁄ 𝜆𝜆′ − 𝜆𝜆′′) = −𝐵𝐵. We can then replace A with –B and rearrange A.8 to get:   

𝑎𝑎
𝐴𝐴
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

𝑝𝑝−𝜆𝜆′
− 𝑑𝑑𝑑𝑑

𝑝𝑝−𝜆𝜆′′
       (A.9) 

and integrate both sides to get, 

𝑎𝑎
𝐴𝐴
𝑡𝑡 + 𝑘𝑘 = ln|𝑝𝑝 − 𝜆𝜆′| − 𝑙𝑙𝑙𝑙|𝑝𝑝 − 𝜆𝜆′′| = 𝑙𝑙𝑙𝑙 � 𝑝𝑝−𝜆𝜆′

𝑝𝑝−𝜆𝜆′′
�    (A.10) 

Since c>0, this implies that p is slightly positive in the neighborhood of zero, therefore we know 
that in this neighborhood 𝜆𝜆′ < 𝑝𝑝 < 𝜆𝜆′′ and thus we can rewrite A.10 as, 

𝑎𝑎
𝐴𝐴
𝑡𝑡 + 𝑘𝑘 = 𝑙𝑙𝑙𝑙 �𝑝𝑝−𝜆𝜆′

𝜆𝜆′′−𝑝𝑝
�     (A.11) 

which is equivalent to  

 𝐾𝐾𝐾𝐾
𝑎𝑎
𝐴𝐴𝑡𝑡 = 𝑝𝑝−𝜆𝜆′

𝜆𝜆′′−𝑝𝑝
     (A.12) 

where 𝐾𝐾 = 𝑒𝑒𝑘𝑘. The initial condition 𝑝𝑝(0) = 0, imples that 𝐾𝐾 = −𝜆𝜆′
𝜆𝜆′′

. Inserting this value of K into A.12, 

as well as replacing A with 1 (⁄ 𝜆𝜆′ − 𝜆𝜆′′) leads to equation 7 in the main text. 


