Ecological Archives E095-045-A2
Riin Tamme, Lars Götzenberger, Martin Zobel, James M. Bullock, Danny A. P. Hooftman, Ants Kaasik, and Meelis Pärtel. 2014. Predicting species' maximum dispersal distances from simple plant traits. Ecology 95:505–513. http://dx.doi.org/10.1890/13-1000.1
Appendix B. Overview of the predictive power of models with random and fixed effects included in the models.
Table B1. Overview of all the predictive models with random and fixed effects included in the models. The models were assigned to one of five groups according to their fixed effects. Values of R², P, degrees of freedom (df), intercept and slope are for the major axis regression (MA) between predicted and observed dispersal distances (average of 999 runs). a = MA intercept, aLCL = lower confidence limit of MA intercept, aUCL = upper confidence limit of MA intercept, b = MA slope, bLCL = lower confidence limit of MA slope, bUCL = upper confidence limit of MA slope.
|
Random effects |
|
Fixed effects |
|
|
|
|
|
|
|
|
|
||||||||||
Group |
Intercept |
Seed mass slope |
Seed release height slope |
Terminal velocity slope |
Order |
Family |
Genus |
|
Dispersal syndrome |
growth form |
Seed mass |
Seed release height |
Terminal velocity |
R² |
P |
df |
a |
aLCL |
aUCL |
b |
bLCL |
bUCL |
1 |
|
|
|
|
|
|
|
|
x |
x |
|
|
x |
0.60 |
< 0.001 |
80 |
0.31 |
0.08 |
0.53 |
0.74 |
0.61 |
0.89 |
1 |
x |
|
|
|
x |
|
|
|
x |
x |
|
|
x |
0.60 |
< 0.001 |
80 |
0.30 |
0.07 |
0.53 |
0.74 |
0.61 |
0.89 |
1 |
x |
|
|
|
x |
x |
|
|
x |
x |
|
|
x |
0.59 |
< 0.001 |
80 |
0.34 |
0.11 |
0.58 |
0.72 |
0.58 |
0.88 |
1 |
x |
|
|
|
x |
x |
x |
|
x |
x |
|
|
x |
0.53 |
< 0.001 |
80 |
0.40 |
-0.02 |
0.82 |
0.70 |
0.47 |
1.00 |
1 |
x |
|
|
x |
x |
|
|
|
x |
x |
|
|
x |
0.59 |
<0.001 |
80 |
0.31 |
0.08 |
0.54 |
0.74 |
0.61 |
0.89 |
1 |
x |
|
|
x |
x |
x |
|
|
x |
x |
|
|
x |
0.59 |
<0.001 |
80 |
0.32 |
0.09 |
0.56 |
0.73 |
0.59 |
0.89 |
1 |
x |
|
|
x |
x |
x |
x |
|
x |
x |
|
|
x |
0.54 |
<0.001 |
80 |
0.38 |
-0.05 |
0.81 |
0.73 |
0.49 |
1.04 |
2 |
|
|
|
|
|
|
|
|
x |
x |
x |
x |
|
0.49 |
< 0.001 |
86 |
0.34 |
0.14 |
0.54 |
0.64 |
0.51 |
0.80 |
2 |
x |
|
|
|
x |
|
|
|
x |
x |
x |
x |
|
0.52 |
< 0.001 |
86 |
0.31 |
0.12 |
0.51 |
0.65 |
0.52 |
0.80 |
2 |
x |
|
|
|
x |
x |
|
|
x |
x |
x |
x |
|
0.51 |
< 0.001 |
86 |
0.31 |
0.10 |
0.52 |
0.66 |
0.52 |
0.82 |
2 |
x |
|
|
|
x |
x |
x |
|
x |
x |
x |
x |
|
0.48 |
< 0.001 |
86 |
0.34 |
0.05 |
0.64 |
0.62 |
0.42 |
0.85 |
2 |
x |
x |
|
|
x |
|
|
|
x |
x |
x |
x |
|
0.52 |
< 0.001 |
86 |
0.31 |
0.12 |
0.51 |
0.66 |
0.52 |
0.80 |
2 |
x |
x |
|
|
x |
x |
|
|
x |
x |
x |
x |
|
0.51 |
< 0.001 |
86 |
0.31 |
0.10 |
0.52 |
0.65 |
0.51 |
0.81 |
2 |
x |
x |
|
|
x |
x |
x |
|
x |
x |
x |
x |
|
0.48 |
< 0.001 |
86 |
0.34 |
0.04 |
0.64 |
0.60 |
0.41 |
0.84 |
2 |
x |
|
x |
|
x |
|
|
|
x |
x |
x |
x |
|
0.52 |
< 0.001 |
86 |
0.31 |
0.11 |
0.51 |
0.65 |
0.52 |
0.80 |
2 |
x |
|
x |
|
x |
x |
|
|
x |
x |
x |
x |
|
0.52 |
< 0.001 |
86 |
0.31 |
0.10 |
0.52 |
0.66 |
0.52 |
0.82 |
2 |
x |
|
x |
|
x |
x |
x |
|
x |
x |
x |
x |
|
0.48 |
< 0.001 |
86 |
0.34 |
0.04 |
0.64 |
0.61 |
0.42 |
0.85 |
2 |
x |
x |
x |
|
x |
|
|
|
x |
x |
x |
x |
|
0.52 |
< 0.001 |
86 |
0.31 |
0.12 |
0.51 |
0.65 |
0.52 |
0.80 |
2 |
x |
x |
x |
|
x |
x |
|
|
x |
x |
x |
x |
|
0.51 |
< 0.001 |
86 |
0.31 |
0.10 |
0.52 |
0.65 |
0.51 |
0.81 |
2 |
x |
x |
x |
|
x |
x |
x |
|
x |
x |
x |
x |
|
0.47 |
< 0.001 |
86 |
0.34 |
0.04 |
0.63 |
0.60 |
0.41 |
0.84 |
3 |
|
|
|
|
|
|
|
|
x |
x |
|
x |
|
0.45 |
< 0.001 |
95 |
0.37 |
0.18 |
0.56 |
0.59 |
0.46 |
0.74 |
3 |
x |
|
|
|
x |
|
|
|
x |
x |
|
x |
|
0.49 |
< 0.001 |
95 |
0.35 |
0.17 |
0.53 |
0.61 |
0.48 |
0.74 |
3 |
x |
|
|
|
x |
x |
|
|
x |
x |
|
x |
|
0.48 |
< 0.001 |
95 |
0.34 |
0.15 |
0.53 |
0.61 |
0.48 |
0.76 |
3 |
x |
|
|
|
x |
x |
x |
|
x |
x |
|
x |
|
0.47 |
< 0.001 |
95 |
0.36 |
0.10 |
0.62 |
0.59 |
0.42 |
0.80 |
3 |
x |
|
x |
|
x |
|
|
|
x |
x |
|
x |
|
0.49 |
< 0.001 |
95 |
0.34 |
0.16 |
0.53 |
0.61 |
0.49 |
0.75 |
3 |
x |
|
x |
|
x |
x |
|
|
x |
x |
|
x |
|
0.48 |
< 0.001 |
95 |
0.35 |
0.15 |
0.54 |
0.61 |
0.48 |
0.76 |
3 |
x |
|
x |
|
x |
x |
x |
|
x |
x |
|
x |
|
0.47 |
< 0.001 |
95 |
0.34 |
0.08 |
0.60 |
0.60 |
0.42 |
0.81 |
4 |
|
|
|
|
|
|
|
|
x |
x |
x |
|
|
0.53 |
< 0.001 |
161 |
0.41 |
0.25 |
0.58 |
0.66 |
0.57 |
0.76 |
4 |
x |
|
|
|
x |
|
|
|
x |
x |
x |
|
|
0.54 |
< 0.001 |
161 |
0.40 |
0.24 |
0.56 |
0.67 |
0.57 |
0.77 |
4 |
x |
|
|
|
x |
x |
|
|
x |
x |
x |
|
|
0.54 |
< 0.001 |
161 |
0.40 |
0.24 |
0.56 |
0.66 |
0.56 |
0.77 |
4 |
x |
|
|
|
x |
x |
x |
|
x |
x |
x |
|
|
0.56 |
< 0.001 |
161 |
0.38 |
0.15 |
0.61 |
0.70 |
0.56 |
0.86 |
4 |
x |
x |
|
|
x |
|
|
|
x |
x |
x |
|
|
0.54 |
< 0.001 |
161 |
0.41 |
0.25 |
0.57 |
0.66 |
0.57 |
0.77 |
4 |
x |
x |
|
|
x |
x |
|
|
x |
x |
x |
|
|
0.54 |
< 0.001 |
161 |
0.40 |
0.24 |
0.56 |
0.67 |
0.57 |
0.77 |
4 |
x |
x |
|
|
x |
x |
x |
|
x |
x |
x |
|
|
0.56 |
< 0.001 |
161 |
0.38 |
0.15 |
0.61 |
0.70 |
0.56 |
0.86 |
5 |
|
|
|
|
|
|
|
|
x |
x |
|
|
|
0.50 |
< 0.001 |
190 |
0.44 |
0.30 |
0.58 |
0.63 |
0.54 |
0.72 |
5 |
x |
|
|
|
x |
|
|
|
x |
x |
|
|
|
0.51 |
< 0.001 |
190 |
0.44 |
0.29 |
0.58 |
0.63 |
0.55 |
0.73 |
5 |
x |
|
|
|
x |
x |
|
|
x |
x |
|
|
|
0.52 |
< 0.001 |
190 |
0.43 |
0.28 |
0.58 |
0.64 |
0.55 |
0.73 |
5 |
x |
|
|
|
x |
x |
x |
|
x |
x |
|
|
|
0.53 |
< 0.001 |
190 |
0.40 |
0.19 |
0.60 |
0.69 |
0.56 |
0.83 |