Appendix B. Relationship between photosynthetic capacity and other variables, including statistics.

1. The relationship between $V_{c, \text { max } 25}$ and various variables.

Predicting photosynthetic capacity $\left(V_{c, \max 25}\right)$ for the first combination of plant functional types (PFT1), that consisted the growth form (herbaceous (H), shrubs (S) and trees (Tr)), environmental variables (day length, (D), relative humidity, (RH), temperature (T) and radiation (R)) and leaf nitrogen content $\left(L N C_{a}\right)$. The general form of the linear-mixed effects model is described below, where the expected value of $V_{c, \max 25}$ is denoted by \widehat{V}, a is the intercept and b_{i} 's are the coefficients.
$\widehat{V}($ PFT1 $)=a+b_{0} H+b_{1} S+b_{2} T r+b_{3} D+b_{4} R H+b_{5} T+b_{6} R+b_{7} L N C_{a}$
The values of intercept and coefficients for different temperature response functions are described in Table A6.
2. The relationship between $J_{\max 25}$ and various variables.

The relationship between $J_{\max 25}$ and various determinants; here a subset of the original data was utilized because only 50 studies reported $J_{\max }$ values. The general form of the linear-mixed effects model is described below, where the expected value of $J_{\max 25}$ is denoted by \hat{J}, a is the intercept and b_{i} 's are the coefficients.
$\hat{J}(P F T 1)=a+b_{0} H+b_{1} S+b_{2} T r+b_{3} D+b_{4} R H+b_{5} T+b_{6} R+b_{7} L N C_{a}$
The values of intercept and coefficients for different temperature response functions are described in Table A7.
3. Calculation of r^{2} for the linear mixed effects model of $V_{c, \text { max } 25}$

The coefficient of determination, r^{2}, is a ratio of explained variation to the total variance
in $V_{c, \max 25}$. In the linear mixed model, the fitted $V_{c, \max 25}$ values was obtained for the population predictions (based only on the fixed effects estimates). Specifically, we used the following equation:
$r^{2}=1-\frac{\sum_{i=1}^{n}(V-\widehat{V})^{2}}{\sum_{i=1}^{n}(V-\bar{V})^{2}}$
where \bar{V} is the mean of the observed $V_{c, \max 25}$. The r^{2} for the linear mixed effects model of $J_{\max 25}$ was calculated in a similar fashion.

