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APPENDIX C 

 

MODEL EQUATIONS WITH CAUSAL DIAGRAM 

 

Appendix C documents the model equations and associated parameter values used in our 

analyses, in the order of the modeling steps outlined in the paper.  See Fig. C1 for an expanded 

diagram of the model, including parameters, symbols and equations from the following text.   

 

Modeling steps 

 

Estimating the number of gut piles eaten per eagle – The expected number of gut piles 

ingested per eagle ( ) increases to the maximum number of gut piles ingested (C*) with 

availability of gut piles per Golden Eagle.  Thus, across locations, expected scavenging increases 

with increasing number of gut piles per 100 km2 (G), but decreases with increasing number of 

golden eagles per 100 km2 (GOEA):  
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where kc is the half-saturation constant, representing the available density of gut piles per eagle 

that would yield half the expected number of gut piles ingested per eagle in a 100 km2 area.  The 

exponent, ψ, is a shape parameter that describes how steep the threshold is between relatively 

low and high scavenging rates; ψ >1 provides the Type III functional response shape.   
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We relied on expert judgment to describe the probability gut piles will be scavenged as a 

function of G and GOEA, from which we derive the expected number of gut piles ingested per 

eagle in any scenario of eagle and gut pile density.  Given the considerable uncertainty about 

scavenging rates expressed among our experts, we define a range from low ( ) to high 

number ( ) of gut piles scavenged per eagle at any gut pile density and sampled from a 

uniform distribution between these bounds for each simulation so  ~ U( , ).  For a 

given availability of gut piles per eagle, we determine  by setting C* equal to 1, k equal to 5 

and ψ equal to 3 and for  we set C* equal to 5, k equal to 10 and ψ equal to 1.5.  This range 

of gut piles scavenged per eagle aligns broadly with our expert’s descriptions of the foraging 

relationships (see Appendix B, Fig. B8). 

While the Type III functional response provides an expected (long-run population 

average) number of gut piles ingested per eagle, the number eaten by individual eagles will vary 

(we assume for modeling that gut piles are not divided between different eagles).  We use a 

Poisson distribution to determine the discrete probability that an eagle ingests 0, 1 and up to the 

maximum possible number of gut piles an individual eagle could ingest in a month (Cmax) given 

the expected average number ingested ( ).  Because we assume there is a maximum possible 

number of gut piles ingested in a month by an eagle, we use the following application of the 

Poisson probability mass function to describe the probability that C gut piles are ingested per 

eagle as a function of the expected number eaten on average.   
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Based on expert opinion, we use five gut piles in a month as the value for Cmax.  Because we 

truncate the distribution, we must also normalize the probabilities so that they sum to one, thus 

yielding the probability of eating C gut piles, given an average of gut piles eaten per eagle in 

the modeled area, or p(C│ ). 

Estimating blood lead concentration per gut pile – The Cauchy distribution is a two-

parameter distribution (mode, Emode, and shape parameter, γ) that provides a probability for each 

of the blood lead concentration levels used in our expert elicitation.  Specifically, the probability 

distribution of lead levels that describes the probability of an eagle having a peak concentration 

of E µg/dL of lead in their blood per scavenge is: 

 

( )
( ) 22

mode

ˆ
γ

γ
π +−

=
EE

Ep .     (C.3) 

 

Like the probability of scavenging gut piles, we truncate the potential maximum increase 

in blood lead concentration per gut pile ingested so we must normalize the probability 

distribution.  Thus the final probability distribution is:  
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Our experts expressed substantial uncertainty about the most likely increase in blood lead per 

scavenge of a lead-containing gut pile, Emode, and we represent this uncertainty using a uniform 

distribution such that the mode concentration is: Emode~U(25,75).  We set the maximum increase 

in blood lead concentration per scavenge, Emax, at 1000 µg/dL and set the shape parameter, γ, to 

25, to align with our experts’ descriptions of blood lead concentration response to gut pile 

scavenging (see Appendix B, Fig. B9).     

To account for the proportion of gut piles that contain no lead bullet fragments, we 

modify Eq. C.3a such that E is reduced by ϕ: 
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We account for uncertainty in the frequency of gut piles containing no lead, when the animal was 

shot with lead ammunition, by drawing a uniform random number such that ϕ~U(10,50).   

Estimating days between multiple gut piles scavenged – When eagles eat more than one 

carcass in a month we determine the maximum potential lag between meals: 
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where C* is the maximum number of scavenging events per eagle for this location (determined 

for the iteration, see Eq. C.1).  To model uncertainty in the average or expected lag time (in all 
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simulations with C* ≥ 2), we draw a uniform integer between the minimum and maximum lag 

times (Lmin and Lmax) such that the average time between feedings, L, is L~U(Lmin,Lmax), where 

Lmin = 3 days.   

Estimating maximum blood lead by quantity of gut piles scavenged – Maximum blood 

lead concentration is a function of the average number of days between scavenge events (L) and 

a blood lead decay rate (D).  The daily decay rate (D) in blood lead concentration is:  
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where Thalf is the average time in days it takes for the lead concentration in the blood to be 

reduced by half.  To incorporate some uncertainty in this average, we draw a uniform random 

number such that Thalf = (10,20), indicating 10 to 20 days for the blood lead to be reduced by 

half.   

Given the population average L and the estimate for D, we can calculate the average 

maximum concentration of lead in the blood during the month.  The maximum amount of lead in 

the blood given the number of gut piles ingested (C) and the amount of lead exposure from each 

gut pile consumed (E) is: 
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PbCE is a probability distribution of maximum blood lead concentration for each potential 

quantity of gut piles consumed per eagle, from 1 to the maximum, C*. 
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 Estimating mortality by maximum blood lead – We use a saturating curve, much like a 

Michelis-Menton curve, such that mortality given the maximum concentration of lead in the 

blood during the month (PbCE) is: 
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where km is a half-saturation constant representing the concentration of lead in the blood that 

leads to a mortality rate of 50%.  The exponent, ψ, is a shape parameter that describes how steep 

the threshold is between relatively low and high probability of mortality; the higher the ψ value, 

the steeper the threshold.  The saturating curve is appropriate here because mortality cannot be 

larger than one and we expect that as the lead concentration increases, mortality will approach 1.   

Our experts differed in their descriptions of the probabilistic relationship between 

maximum blood lead and mortality, MCE, and we represent this uncertainty by using a uniform 

distribution such that the half-saturation is: km~U(150,700).  We set the maximum mortality rate 

at 1.0 and the shape parameter, ψ, to 2.5 for all runs, to align with our experts’ descriptions of 

mortality rate per maximum blood lead concentration (see Appendix B, Fig. B10).   

Integrating blood lead concentration and mortality: expected maximum blood lead and 

mortality for a site – Given the probability distribution for the number of gut piles scavenged 

(p(C│ )) and the probability distribution of blood lead concentration per gut pile consumed 

(p(E)), we can project the joint probability distribution describing the expected number of gut 

piles eaten and the blood lead concentration due to those gut piles, CpCE | .  This simply the 

product of the two distributions, the expected maximum blood lead:  
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To determine the expected mortality rate that accounts for multiple scavenge events, we 

simply need to multiply this joint probability distribution, CpCE | , by the mortality consequence 

of that combination, MCE.  The total expected mortality is thus influenced by the availability of 

carcasses per eagle and the amount of lead concentration increase per gut pile such that total 

expected mortality rate in the area (hunting unit) ( CM | ) is: 
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It follows that the number of golden eagles dying per area (hunting unit) is simply: 

 

Deaths = GOEA * ( CM | )     (C.10) 

   

To estimate mortality rates at larger geographical scales, we sum the total deaths and divide by 

the total eagle abundance across all the units encompassed by the larger area. 

Incorporating mitigation – We represent the proportion of gut piles removed from the 

landscape as α1 and the proportion of bullets that are non-lead as α2.  To incorporate gut pile 

removal, we modify Eq. C.1 such that G is reduced by α1: 
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To incorporate replacement of lead with non-lead bullets, we reduce p(E) (as calculated 

in Eq. C.3b) by α2, the proportion of harvested big game animals shot with non-lead 

ammunition:   
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FIG. C1. Causal diagram illustrating the parameters (boxes) and their relationships (arrows) in the 
golden eagle population model projecting number of eagles dying due to exposure to lead 
ammunition consumed from big game gut piles during one month of hunting season in a defined 
geographical area (hunting unit in our examples).  Equation numbers are shown to the left of the 
calculated parameters.  The predictive variables (darker shaded boxes) are set for each scenario 
and geographical unit modeled.  These ‘inputs’ include (1) the total number of golden eagles in 
the specified region (GOEA), (2) two game harvest parameters for each harvest unit in that 
region - the number of big game animals shot during the fall hunting season and the proportion 
of game carcasses hunters retrieved and field-gutted, and (3) two mitigation scenario parameters: 
the proportion of hunters using non-lead ammunition (α1), and the proportion of gut piles 
removed from the field by hunters (α2). The last two parameters may be set to zero in status quo 
simulations without lead abatement mitigation.  Additional input parameters essential to 
calculating lead ingestion and mortality (lighter shaded boxes) include the maximum number of 
gut piles scavenged per eagle per month (C*), the minimum lag in days between multiple 
scavenging events (Lmin), the half-life of lead in blood (Thalf), and the proportion of gut piles 
without lead fragments (ϕ).  The model uses these parameters to calculate all the variables in un-
shaded boxes: (1) the number of gut piles per hunting unit (G) and the number of gut piles 
scavenged per eagle (C; Eqs. C.1-C.2), (2) the blood level increase per gut pile ingested (E; Eq. 
C.3), (3) the number of days between gut piles scavenged (L; Eq. C.4), (4) the daily decay rate of 
blood lead (D; Eq. C.5), (5) the maximum blood lead by total gut piles scavenged (PbCE; Eq. 
C.6), (6) the mortality rate per blood lead level (MCE; Eq. C.7), (7) the expected maximum blood 
lead during the month (PCE; Eq. C.8), and (7) the expected mortality rate (M; Eq. C.9) and the 
number of Golden Eagles deaths due to acute lead poisoning in a month (Eq. C.10).  Mitigation 
affects the calculation of either gut piles per hunting unit (G; Eq. C.11) or blood level increase 
per gut pile ingested (E; Eq. C.12).  Not depicted in the diagram are additional input parameters 
that determine the shape of the response curves for scavenging rate (gut piles/eagle), blood lead 
increase per gut pile, and mortality per blood lead (see Eqs. C.1-C.2, C.3, and C.7).  The input 
parameters values have variance with specified distributions so the model output is a probability 
distribution of golden eagle deaths produced from repeated stochastic simulations.  To estimate 
total deaths, calculations are completed for each geographical area (e.g., hunting unit) in an 
analysis area. 
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