Appendix A. Multiple Element Limitation (MEL) model as applied to arctic tundra.

The full Multiple Element Limitation (MEL) model used in the paper is described in the electronic appendix to Rastetter et al. (2013). Here we describe only the modifications we made to the model for application to arctic tundra (MELIVarc). Parameters and variables and their values are defined in Table A1. All citations to equations in the text are equations in the electronic appendix to Rastetter et al. (2013).

Allometry (replaces Eq. A35)

To calculate the allometry of active biomass as a function of total biomass, we now use a simple linear relation with a correction to insure that active biomass never exceeds total biomass (Fig. A1):

$$B_A = \min(B_{T^*}, \ \alpha_B + \gamma_B \ B_{T^*})$$

Organic soil depth index

We calculate an organic soil depth index that is proportion to the amount of phase I plus phase II soil organic carbon. This index is used in the soil water and soil temperature models:

$$z_p = a_p \left(D_{C1} + D_{C2} \right)$$

Soil heat budget and soil temperature

We calculate the soil heat budget based on heat exchange with the underlying permafrost and the overlying air, and on the radiative heating. The soil heat budget is calculated on discrete daily time steps:

$$S_{Q}(t) = S_{Q}(t-1) + k_{pf} \frac{T_{pf} - T_{so}}{z(z_{pf} + z_{T})} + \frac{T_{a} - T_{so}}{z z_{s}(1/k_{s} + 0.01 W_{snow}/k_{snow})} + \frac{b_{I}(1-\alpha)I}{z}; \text{ if } W_{snow} > 0$$

$$= S_{Q}(t-1) + k_{pf} \frac{T_{pf} - T_{so}}{z(z_{pf} + z_{T})} + k_{s} \frac{T_{a} - T_{so}}{z z_{s}} + \frac{b_{I} I e^{-k_{I} L}}{z}; \text{ if } W_{snow} = 0$$

$$k_{sT} = \frac{W}{1000 z} k_{w} + (1 - \rho_{s}) \min\left(\frac{z_{p}}{z}, 1\right) k_{so} + (1 - \rho_{s}) \max\left(1 - \frac{z_{p}}{z}, 0\right) k_{sm}$$

 $k_{sF} = 1.06 k_{sT} + 0.0121$

 $k_s = k_{sT}$; if $T_{so} > 0$ = k_{sF} ; otherwise

where k_{sT} , k_{sF} , and k_s are the thawed, frozen and actual soil thermal conductivity. We now use soil temperature for all temperature-sensitive processes below ground. We calculate soil temperature based on the soil heat content and the heat capacity of thawed and frozen soil:

$$T_{so} = \frac{S_Q - S_{QT}}{c_{sT}}; \text{ if } S_Q > S_{QT}$$
$$= \frac{S_Q - S_{QF}}{c_{sF}}; \text{ if } S_Q < S_{QF}$$
$$= 0 ; \text{ otherwise}$$

$$c_{sT} = \frac{W}{1000 z} c_{w} + (1 - \rho_{s}) \min\left(\frac{z_{p}}{z}, 1\right) c_{so} + (1 - \rho_{s}) \max\left(1 - \frac{z_{p}}{z}, 0\right) c_{sm}$$

 $c_{sF} = 0.88 c_{sT} - 0.139$

where c_{sT} and c_{sF} are the thawed and frozen soil heat capacities. Soil temperature (T_{so}) replaces air temperature (T_a) in all the following processes and equations in Rastetter et al. (2013): (1) root portion of plant respiration in Eq. A61, (2) uptake for NH₄⁺, NO₃⁻, and PO₄³⁻ in Eqs. A66-A68, (3) the temperature/moisture response of general microbial metabolism in Eq. A96, and (4) denitrification in Eq. A124. T_{so} is also used to calculate non-symbiotic N fixation, which is described below.

Recalcitrant dissolved organic matter

We now simulate both labile and recalcitrant forms of dissolved organic matter and associated N (DOM and DON). The equations for recalcitrant DOM and DON production and for recalcitrant DOM leaching are identical to those for labile DOM in Rastetter et al. (2013; respectively, Eqs. A115, A116, and A132), but with different parameters. The differential equation for recalcitrant DOM is the same as that for labile DOM (Eq. A5), but without uptake by either plants or microbes.

Hydrologically active soil fraction

We restrict hydrologic runoff and plant water uptake to the fraction of the active soil layer that was thawed. In addition, because the hydraulic conductivity of the underlying silt mineral soil is low, we scale runoff and water uptake to the organic soil depth index (z_p) . The scaling factor is calculated as the minimum of the thawed or organic depth fractions or one:

$$f_A = \min\left(1, \frac{z_T}{z}, \frac{z_p}{z}\right)$$

Hydrologic runoff (modified from Eq. A128)

We scale the runoff equation by the f_A to limit runoff to only that volume of the soil that is thawed:

$$R_{O} = D_{W} f_{A} (W - 1000 z \theta_{f}) + \max(0, I_{rain} - f_{A} (1000 \rho_{s} z - W)) + \max(0, T_{SM} - f_{A} (1000 \rho_{s} z - W))$$

In addition, we limited infiltration from rainfall (A134) and snow melt (A137) to the pore volume within the thawed soil; we add any excess to the runoff.

Snowmelt critical temperature (modification of Eq. A137)

We now use separate critical temperatures for determining when precipitation is as snow (T_{crt}) and the critical temperature of melting the snow pack (T_{crts}) .

Water uptake by plants (modified from Eq. A52)

We scale water uptake by the f_A to limit water extraction by roots to the thawed soil:

$$U_{Ws} = g_W f_A U_{Wp} \left(1 - e^{-k_E R_L \frac{(V_W - V_{min})}{V_R}} \right) (\psi_s - \psi_w)$$

Canopy light photosynthesis (modified from Eq. A48)

We modified the photosynthesis-light equation to be more responsive to changes in allocated effort at low light levels:

$$U_{CI} = 1.6 D_L f_{PT} \left(\frac{C_a - 60}{C_a + 120} \right) \frac{P_{Imax}}{k_I} \ln \left(\frac{k_{PI} + I/D_L}{k_{PI} + I e^{-k_I L}/D_L} \right)$$

Water uptake and transpiration (modified from Eqs. A51 and A58)

To facilitate automated calibration, we added a constant (S_{CET}) to scale from hourly to daily water uptake and transpiration:

$$U_{Wp} = 7.775 S_{cET} D_L c_{cmax} \Delta_e$$
 and $U_W = 7.775 S_{cET} D_L c_c \Delta_e$

Note: the 7.775 is a combination of the air density, air specific heat, latent heat of vaporization for water, and psychrometer constant.

Carboxylation-diffusion (modified from Eqs. A54 and A57)

To facilitate automated calibration, we added a constant (S_{Ucc}) to scale from hourly to daily carboxylation and diffusion:

$$P_{sC} = D_L \frac{P_{Cmax} C_{i^*}}{k_C + C_{i^*}} = 0.000335 \ S_{Ucc} \ D_L c_{cs} \left(C_a - C_{i^*}\right) \text{ and } c_c = \frac{U_C}{0.000335 \ S_{Ucc} \ D_L \left(C_a - C_i\right)}$$

Note: the 0.000335 is a combination of the ratio of diffusivity of water to CO_2 , the molar weight of C, and the moles m^{-3} for an ideal gas.

CO2- and H2O-limited photosynthesis (modified from Eqs. A59 and A60)

To facilitate calibration, we changed the weighting on the differential term in the CO₂-limited and H₂O-limited photosynthesis to a parameter (β):

$$U_{CC} = P_{sC} + \beta \left(\frac{dP_{sC}}{dV_W} - \frac{dP_{sC}}{dV_C} \right) \text{ and } U_{CW} = P_{sC} - \beta \left(\frac{dP_{sC}}{dV_W} - \frac{dP_{sC}}{dV_C} \right)$$

Plant uptake of dissolved organic N

We allow plants to take up labile DON. The uptake equation is analogous to the other nutrient uptake equations in the model (Eqs. A66-A68). The two uptake equations for labile DOM uptake have to be solved simultaneously to calculate uptake and the concentration of DOM at the root surface (C_{aqDOMs}) and the DON uptake is then calculated based on the C:N ratio of labile DOM:

$$U_{DOM} = g_{DOM} \left(\frac{V_{DON} - V_{min}}{V_R} \right) R_L Q_{10v}^{T_{SO}/10} \left(\frac{C_{aqDOMs}}{k_{DOM} + C_{aqDOMs}} \right)$$
$$= \frac{D_{DOM} R_L 12 \times 10^{-3}}{\beta_{NRD}} \left(C_{aqDOMs} - C_{aqDOM} \right)$$

$$U_{DON} = U_{DOM} / q_{DOM}$$

The uptake rates of DOM and DON are added to differential equations for biomass C and N (Eqs. A1 and A6) and the uptake of DOM is subtracted from the differential equation for labile DOM (Eq. A5).

Symbiotic N fixation

We calculate symbiotic N fixation as proportional to the effort allocated to support N fixation and the root length available to host the symbionts, and modified by a Q10 function of soil temperature:

$$U_{Nfix} = g_{Nfix} \left(\frac{V_{Nfix} - V_{min}}{V_R} \right) R_L Q_{10\nu}^{T_{SO}/10}$$

The associated N gain is added to the plant biomass N in the differential equation for B_N (Eq. A6).

Allocation of uptake effort among substitutable sources of N (modified from Eqs. A82 and A83 plus adds equations for DON and symbiotic N fixation)

For the Arctic we allow plant N requirements to be filled by four substitutable sources of N, NH₄⁺, NO₃⁻, dissolved organic N (DON), and symbiotic N fixation. Incremental allocation of uptake effort is to the N source with the highest marginal yield. We calculate the marginal yield as the incremental increase in uptake per incremental increase in allocated effort, including the effort needed to supply the C cost of assimilating each of the N sources:

for k = NH4, NO3, DON, or Nfix

$$y_{k} = \frac{\frac{dU_{k}}{dV_{k}}}{1 + \frac{dU_{k}}{dV_{k}}\frac{\phi_{k}}{\Theta_{C}}}$$

We extended Eqs. A84 - A86, A94 and A95 to include all four N sources and added equations analogous to A91 and A92 for DON and symbiotic N fixation.

Temperature responses of plant metabolic respiration (replaces Eq. 61)

We implemented three changes to the equation for metabolic respiration. First we calculated root metabolic respiration based on soil temperature. Second, we modified the Q₁₀ formulation so that respiration increases more linearly for air temperatures between 15 and 20 °C (in our simulations, air temperatures rarely exceed 15 °C and never above 20 °C). Third, we modified the wood respiration term to account for difference between wood and rhizome respiration.

$$R_{a} = r_{m} \left(q_{LN} B_{L} + q_{WN} B_{W} e^{-k_{rmW} B_{W}} \right) \left(m_{Q10V} + b_{Q10V} T_{a} \right)^{T_{a}/10} + r_{m} q_{RN} B_{R} \left(m_{Q10V} + b_{Q10V} T_{a} \right)^{T_{SO}/10}$$

Plant respiration associated with N uptake and assimilation (modified from Eq. A62) We now assess a respiration cost to the uptake and assimilation of all four forms of N acquisition:

$$R_{u} = \phi_{NH4} U_{NH4} + \phi_{NO3} U_{NO3} + \phi_{DON} U_{DON} + \phi_{Nfix} U_{Nfix}$$

Non-symbiotic N fixation

The rate of non-symbiotic N fixation in the model is proportional to the deviation of the phase I soil C:N ratio above the specified critical C:N ratio and is modified by the same temperature/moisture function as all microbial processes (R_m, Eq. A96):

$$U_{NNSfix} = R_m \gamma_{Sfix} \left(\frac{D_{C1}}{D_{N1}} - q_{Sfix} \right) D_{C1}; \text{ if } \frac{D_{C1}}{D_{N1}} > q_{Sfix}$$
$$= 0 \qquad \qquad : \text{ otherwise}$$

The fixed N is added to the differential equation for phase I soil organic matter (Eq. A8) and to the total microbial N acquisition (Eq. A106).

Figure A1: Allometric equation used to calculate active biomass (leaf + fine roots) from total biomass. Solid black line in the upper panel is the relationship used in the MEL model. x's are for tussock tundra after undergoing 3 and 9 years of experimental manipulations of nitrogen and phosphorus fertilization, enclosures in green houses, or enclosure in shade houses (see Fig. 3 in main text). Because only leaf and woody data were available, root mass was estimated based on the root:active ratio predicted by the MEL model. Dots are for the four major vegetation types on the North Slope of Alaska. Because the root biomass reported by Shaver and Chapin (1991) were thought to be over estimates (Shaver pers. Com.) we estimated root biomass assuming that the roots: active ratio of 0.57 used in the tussock-tundra calibration applied to all four vegetation types. Lower panel shows the modeled versus observed leaf biomass for the same data.

State Variables	Symbol	Value	Units	Notes
Jan 1 biomass C	B_C	654	g C m ⁻²	$B_C(peak)$ - L_{CWC} - L_C
Jan 1 biomass N	B_N	15.2	g N m ⁻²	$B_N(peak)$ - L_{CWCN} - L_N
Jan 1 biomass P	B_P	1.52	g P m ⁻²	$B_P(peak)$ - L_{CWCP} - L_P
Peak season biomass C	B_C	878	g C m ⁻²	Aboveground biomass (Mack et al. 2004 - Fig. 2a) + Fine roots (Sullivan et al. 2007)
Peak season biomass N	B_N	20.6	g N m ⁻²	B_C^* %N (Shaver et al. 2006)
Peak season biomass P	B_P	2.06	g P m ⁻²	Shaver and Chapin, 1991 - Table 5
Soil organic C	D_{Cl}	5049	g C m ⁻²	Mack et al. 2004 - Supplementary Table 1
Soil organic N	D_{NI}	178	g N m ⁻²	Calibrated, initial value from Mack et al. 2004 - Supplementary Table 1
Soil organic P	D_{Pl}	17.8	g P m ⁻²	D_{NI} /N:P ratio for O horizon (Hobbie & Gough 2002 - Table 2)
Woody debris C	D_{Cc}	517.9	g C m ⁻²	Dead rhizomes (Dennis 1997, Shaver et al. 2006) + standing dead (Gough et al. 2009)
Woody debris N	D_{Nc}	6.73	g N m ⁻²	D_{Cc} *%N (Shaver et al. 2006)
Woody debris P	D_{Pc}	0.67	g P m ⁻²	$D_{Nc}/B_N:B_P$ (Shaver and Chapin 1991 - Table 5)
Phase II SOM C	D_{C2}	13885	g C m ⁻²	Mack et al. 2004 - Supplementary Table 1, mineral soil extrapolated to
Phase II SOM N	D_{N2}	646	g N m ⁻²	depth of thaw
Phase II SOM P	D_{P2}	79.4	g P m ⁻²	D_{N2} *P:N (Kirkby et al. 2011)
NH4	E_{NH4}	0.26651	g N m ⁻²	Giblin et al. 1991 - Fig 5

grouped into sections by type and then within each section values are arranged in the same categories used in Rastetter et al. (2013)

Table A1: State variables, drivers, processes and parameters for the Multiple Element Limitation (MEL) model. Variables are

NO ₃	E_{NO3}	0.00194	g N m ⁻²	Giblin et al. 1991 - Fig 5	
PO_4	E_{PO4}	0.00465	g P m ⁻²	Giblin et al. 1991 - Fig 5	
P Prim min	P_A	25.11	g P m ⁻²	Chapin et al. 1978 Non-exchangeable inorganic P (lower 10cm	
P non-Occluded	P_{2nd}	14.12	g P m ⁻²	extrapolated to depth of thaw); 64% as PA, 36% as P2nd (Yanai 1992)	
g labile DOM C	E_{DOM}	2.3	g C m ⁻²	Total E_{DOM} = mobile (Whittinghill 2010) + sorbed (Oosterwoud 2010),	
g recalcitrant DOM C	E_{DOMR}	20.7	g C m ⁻²	split 10% labile 90% recalcitrant (Whittinghill 2010; McDowell 2006)	
CO ₂ effort	V_c	0.383	effort g DW ⁻¹		
NH ₄ Effort	V_{NH4}	0.134	effort g DW ⁻¹		
PO ₄ effort	V_{PO4}	0.239	effort g DW ⁻¹	Total root effort calculated from leaf:root ratio. Effort to water uptake	
Light effort	V_I	0.0367	effort g DW ⁻¹	NH ₄ versus DON allowed to adjust to calibration conditions.	
DON effort	V_{DON}	0.105	effort g DW ⁻¹		
Water effort	V _{H2O}	0.010	effort g DW ⁻¹		
NO ₃ effort	V _{NO3}	0.001	effort g DW ⁻¹	Set to minimum offert	
Nfix effort	V _{nfix}	0.001	effort g DW ⁻¹	Set to minimum errort	
Soil water	W	136.5	mm		
Snow pack	Wsnow	64.6	$mm \ \mathrm{H_2O}$	Spun up based on the representative year used for control calibration.	
Soil Heat	SQ	359.6	arbitrary		
			X7 1		
Steady State Fluxes		Symbol	Value	Notes	
Carbon, g C/m²/yr					
Pho	otosynthesis	U_c	430	=2 * Net Primary Production (Waring et al. 1998)	
Plant maintenance	e respiration	R_a	146.7	$R_a = R_{cpt} - R_g - R_u$	
Plant growth respiration		-		0.25 * NPP	

N uptake respiration	R_u	14.5	Sum of N uptake * cost
DOC uptake	U_{DOM}	8.95	$U_{DON}*q_{DOM}$
Total plant respiration	R_{cpt}	215	U_c - Net primary production
Net primary production	NPP	215	Shaver & Chapin 1991 - Table 11
Coarse woody litter	L_{CWC}	49.45	23% of total litter (Shaver & Chapin 1991 - Fig. 5)
Fine litter	L_C	174.5	Net primary production - $L_{CWC}+U_{dom}$
D_{Ce} to D_{e1} transition	T_{CWC}	49.45	Steady state for W_C
Phase I respiration	R_{Cm1}	168.3	Steady state for D_{CI}
D_{C1} to D_{C2} transition	T_{DC12}	44.79	$0.2 * L_C + L_{CWC}$ (Mellilo et al. 1989 - Fig. 1)
Phase II respiration	R_{Cm2}	44.79	Steady state for D_{C2}
DOC production	P_{DOM}	13.97	$P_{don}*q_{dom}$
Microbial DOC uptake	U_{DOMm}	5	Calibrated to D_C
DOC inputs	I_{DOM}	0	Assumed equal to 0
DOC leaching	L_{DOM}	0.0243	Steady state for E_{dom}
DOMR production	P_{DOMR}	1.91	$P_{DOMR}*q_{DOMR}$
DOMR leaching	L _{DOMR}	1.91	Steady state for E_{DOMR}
DOMR deposition	I _{DOMR}	0	Assumed equal to 0
Nitrogen, g N/m²/yr			
NH ₄ deposition	I_{NH4}	0.0147	Voor 2000 date in Shaver and Loundre 2006e
NO ₃ deposition	I _{NO3}	0.0203	i cai 2000 data ili Shavel and Laundre 2000a
DON deposition		0	Ідом/ддом

NH ₄ leaching	L_{NH4}	0.0013	Yano 2010: Table 6 concentration R_O
NO ₃ leaching	L_{NO3}	0.0003	Steady state E_{NO3}
DON leaching	L_{DON}	0.00657	$L_{don} = L_{donT}$ - L_{donR}
Nitrification	T_{Ntr}	0	Negligible in control calibration
Denitrification	T_{DNtr}	0	Negligible in control calibration
Plant NH ₄ uptake	$U_{\rm NH4}$	2.96	U _{NTotal} - U _{DON} - U _{NO3} - U _{Nfix}
Plant NO ₃ uptake	U_{NO3}	0	NO ₃ often below detection in tundra
Plant DON uptake	U_{DON}	2.42	Approximately 0.45 * U _{NTotal} (Schimel & Chapin 1996)
Plant N-fixation	U_{nfix}	0	Negligible in control calibration
Coarse woody litter	L_{CWN}	0.643	$L_{CWC} * q_{WNwl}/q_C$
Fine litter	L_N	4.73	Steady state for B_n
D_{Nc} to D_{Nl} transition	T_{CWN}	0.643	Steady state for D_{Nc}
Microbial NH ₄ uptake	$U_{\rm NH4m}$	13	U_{NH4} * 4.4 (Nadelhoffer et al. 1999 - Figure 1).
Microbial NO ₃ uptake	U_{NO3m}	0.02	Assumes nearly all I_{NO3} is taken up by microbes
Microbial DON uptake	U_{DONm}	1.351	U_{domm}/q_{DOM}
Nonsymbiotic N Fixation	U_{NNSFix}	0.098	Hobara et al. 2006 - Table 3
Phase I N mineralization	R_{Nm1}	13.87	Steady state for E_{NH4}
D_{N1} to D_{N2} transition	T_{DN12}	2.084	$T_{DC12}/(D_{C2}/D_{N2})$
Phase II N mineralization	R_{Nm2}	2.084	Steady state for D_{N2}
DON production		3.777	Steady state for E_{dom}
Total N uptake		5.375	NPP C:N = 40 (Hobbie and Chapin 1998, Nadelhoffer et al. 2002)
DONR production		0.1248	Steady state E_{domr}

DONR deposition		0	Assumed $= 0$
DONR leaching		0.1248	Assuming 95% DON loss is recalcitrant
Total DON leaching		0.1314	Steady state: Total N budget
Phosphorus, g P/m²/yr			
PO ₄ deposition	I_{PO4}	0.002	Year 2000 data in Shaver and Laundre, 2006a
PO ₄ leaching	L_{PO4}	0.0044	Steady state: Total P budget.
°1 mineral weathering	T_{PAw}	0.0024	Steady state for P_a
°2 mineral weathering	T_{P2w}	0.0012	Assumed half of primary mineral weathering.
°2 mineral formation	TPO4s	0.0012	Steady state for E_{PO4}
Plant PO ₄ uptake	U_{PO4}	0.5375	NPP-P $\sim 10\%$ NPP-N (Shaver and Chapin 1991 - Table 10)
coarse woody litter	L_{CWP}	0.0643	$L_{CWC} * q_{WPwl}/q_C$
fine litter	L_P	0.4732	Steady state for B_p
D_{Pc} to D_{P1} transition	T_{CWP}	0.0643	Steady state for D_{Pc}
Microbial PO ₄ uptake	U_{PO4m}	1.784	Assume an approximate 7.3:1 N:P mass ratio for microbial uptake (Redfield, 1958).
Phase I P mineralization	R_{Pm1}	2.066	Steady state for D_{PI}
D_{P1} to D_{P2} transition	T_{DP12}	0.2561	$T_{DC12}/(D_{C2}:D_{P2})$
D _{P2} mineralization	R_{Pm2}	0.2561	Steady state with T_{DP2}
°1 mineral deposition		0.0024	A constant rate to reflect exposure of new parent material.
Water, mm/yr			

Precipitation	I _{ppt}	327.8	Year 2000 daily temperature maximum, minimum pyranometer, and precipitation from Toolik Field Station's main weather station. Shaver and Laundre 2002
Interception	Int	32.78	Estimated as 0.1* <i>I</i> _{ppt}
Runoff	Ro	118	I_{ppt} - I_{nt} - Transpiration
Transpiration/ water uptake	U_W	144.2	I_{ppt} - R_o - I_{nt}
Evapotranspiration		177	Estimated as $0.54*I_{ppt}$ (Kane 1997 - Table 3.1)

Description	Symbol	Value	Units	Notes
Driving Variables:				
Daily minimum temperature	T_{min}	variable	°C	
Daily maximum temperature	T_{max}	variable	°C	Year 2000 daily temperature maximum, minimum
Daily total short-wave radiation	Ι	variable	MJ m ⁻² day ⁻¹	Station's main weather station. Shaver and Laundre 2002
Precipitation	I_{ppt}	variable	mm day ⁻¹	
Depth of thaw	Z_T	variable	m	Shaver and Laundre 2006
Atmospheric CO ₂	C_a	360	mmol mol ⁻¹	Assumed constant at 360 mmol mol ⁻¹
NH ₄ input	I_{NH4}	variable	g N m ⁻² day ⁻¹	
NO ₃ input	I_{NO3}	variable	g N m ⁻² day ⁻¹	Model runs on daily values. Annual totals are reported
PO ₄ input	I_{PO4}	variable	g N m ⁻² day ⁻¹	with model fluxes, daily values are calculated from
DOM input	I_{DOM}	variable	g N m ⁻² day ⁻¹	and Laundre 2006a)
DOMR input	I _{DOMR}	variable	g N m ⁻² day ⁻¹	
Apatite input	$I_{apatite}$	0.00000664	g P m ⁻² day ⁻¹	A constant rate to reflect exposure of new parent material.
Environment:				
Soil depth	Z	0.35	m	Shaver and Laundre 2006b

Soil porosity	$ ho_s$	0.85	mm mm ⁻¹	Bridgham et al. 2001
Bulk density	D_{Bs}	0.343	Mg m ⁻³	Average value (Giblin et al. 1991, Nadelhoffer et al. 1995, Mack et al. 2004)
NH ₄ sorption capacity	S_{NH4}	402	g NH4-N Mg ⁻¹ dry soil	Fit to data in Mikolajkow 2003 - Fig. 3
NH ₄ affinity constant	\mathcal{E}_{NH4}	786	umol NH ₄ L ⁻¹	5
DOM sorption capacity	S _{DOM}	805	g DOM-C Mg ⁻¹ dry soil	Fit to Vandenbruwane et al. 2007 - Fig. 1
DOM affinity constant	E DOM	2130	umol DOM L ⁻¹	C
PO4 sorption capacity	S_{PO4}	62	g PO ₄ -P Mg ⁻¹ dry soil	Fit to Vincent, 2006 - Fig. 2.2
PO4 affinity constant	\mathcal{E}_{PO4}	150	umol PO ₄ L ⁻¹	
DOMR sorption capacity	S _{DOMR}	600	g DOM-C Mg ⁻¹ dry soil	Calculated from E _{DOMR} and dissolved DOM concentration (Whittinghill 2010, Oosterwoud 2010)
DOMR affinity constant	E DOMR	2130	umol DOM L ⁻¹	Same as DOM
field capacity	$ heta_{\!f}$	0.39	mm mm ⁻¹	Bridgham et al. 2001
Wilting point	$ heta_{\!\scriptscriptstyle W}$	0.15	mm mm ⁻¹	Assume range of $5-20\%$ H ₂ 0 by volume @wilting point. Organic soil at high end.
Field potential	ψ_{f}	-0.01	MPa	Dunne and Leopold 1978, p 176
Wilting potential	ψ_w	-1.5	MPa	Dunne and Leopold 1978, p 176
Initial SOM	S_{OM0}	18934	g C m ⁻²	$D_C + S_C$
initial DOP	Z_{po}	0.35	m	Shaver and Laundre 2006b
Radiation term	b_I	0.03	heat m ² day MJ ⁻¹	Calibrated to observed soil temperatures
Thermal conductivity to permafrost	k_{pf}	0.08	MJ m ⁻¹ day ⁻¹	Calibrated, but in the same relative proportion to the thermal conductivity values in Biesinger et al. 2007. We had to calibrate these values because we are simulating one soil layer rather than a continuous profile of small discrete layers.

Organic soil thermal conductivity	kso	0.012	$MJ m^{-1} day^{-1} oC^{-1}$	Calibrated to observed soil temperatures
Mineral soil thermal conductivity	k _{sm}	0.024	$MJ m^{-1} day^{-1} or C^{-1}$	Calibrated to observed soil temperatures
Water thermal conductivity	k_w	0.005	MJ m ⁻¹ day ⁻¹ °C ⁻¹	Calibrated to observed soil temperatures
Snow thermal conductivity	ksnow	0.0014	MJ m ⁻¹ day ⁻¹ °C ⁻¹	Biesinger et al. 2007, assumes 10:1 snow:water volume
Organic Soil Heat Capacity	C_{SO}	0.58	MJ m ⁻³ °C ⁻¹	Adapted from Biesinger et al. 2007. Relative values are
Mineral Soil Heat Capacity	C_{sm}	3.28	MJ m ⁻³ °C ⁻¹	proportional to each other, but smaller because they are applied to a single profile here rather than a series of
Water Heat Capacity	\mathcal{C}_W	4.2	MJ m ⁻³ °C ⁻¹	discrete depths.
Zero low limit	S_{QF}	373.15	MJ m ⁻³ °C ⁻¹	Amount of heat contained in the soil when it warms to freezing, calibrated to soil temp data from Toolik
Zero high limit	S_{QT}	400	MJ m ⁻³ °C ⁻¹	Amount of heat contained in the soil as it cools to freezing
Permafrost temperature	T_{pf}	-7	°C	1994-2003 average, Shaver and Laundre 2002
Snow albedo	α	0.8		Biesinger et al. 2007
Depth to permafrost	Z _{pf}	1.8	m	This is assumed to be deep enough to serve as a constant temperature boundary for the soil temperature model.
Depth to surface	Z_S	0.2	m	Representative depth for soil temperature
Organic soil index slope	a_p	1.85E-05	$m^{3} g^{-1} C$	active layer depth/initial SOM at calibration site
Allometry:				
C:dry weight ratio	q_C	0.5	g C g ⁻¹ DW	Shaver et al. 2006
Ba intercept	$lpha_B$	100	g C m ⁻²	Fight Shares and Chargin 1001 and Chargin et al. 1005
$B_{\rm A}$: $B_{\rm T}$ slope	γ_B	0.212676	none	Fit to Shaver and Chapin, 1991 and Chapin et al, 1995
Specific leaf area	a_{sla}	0.006528	$m^2 g^{-1} DW$	Shaver et al. 2001 - Table 5
Specific root length	a_{srl}	27.5	m g ⁻¹ DW	Average of estimates for <i>E. Vaginatum</i> , deciduous, and evergreen plants (Bjork et al. 2007, Ostonen et al. 2007)

Leaf N fraction	$q_{\scriptscriptstyle LN}$	0.0163	g N g ⁻¹ DW	
Wood N fraction	q_{WN}	0.00867	g N g ⁻¹ DW	Shaver et al. 1989
Root N fraction	$q_{\scriptscriptstyle RN}$	0.0112	g N g ⁻¹ DW	
Leaf P fraction	$q_{\scriptscriptstyle LP}$	0.00163	g P g ⁻¹ DW	
Wood P fraction	q_{WP}	0.000867	g P g ⁻¹ DW	Calculated from biomass data (Shaver et al. 1989)/N:P (Shaver & Chapin 1991 - Table 5 Tussock Site)
Root P fraction	$q_{\scriptscriptstyle RP}$	0.00112	$g P g^{-1} DW$	
Stoichiometric feedback	k_q	0.3	unitless	calibrated to response to changes in nutrient availability
Leaf Area Index	LAI	1.33	$m^2 m^{-2}$	$B_L^*a_{sla}$
Active biomass (leaves and roots)	B_a	487.49	g DW m ⁻²	Shaver et al. 2006
Leaf Biomass	B_L	203.46	g DW m ⁻²	Shaver et al. 2006
Canopy Phenology:				
Minimum canopy fraction	f_{cmin}	0.4	none	Shaver and Chapin 1991 - Figure 2
Start Deg day sum	J_{DI}	10	Julian Day	
Deg day bud open	D_{bud}	10	Degree day	
Deg day full canopy	D_{full}	160	Degree day	Calibrated to phenology in Markon 2001, NDVI data for north slope
Day fall starts	J_{start}	250	Julian day	the second se
Day fall ends	J_{end}	270	Julian day	
Time offset	T_{ly}	0	days	Simulation start relative to Jan 1
Latitude	lat	68.5	degrees	Shaver and Laundre 2002
Jday divisor	J_{dayD}	365	days	Assuming a 365 day year
Photosynthesis/Transpiration:				
Temperature response parameters for light capture	T _{maxL}	100	°C	Values approximated from Johnson and Tieszen (1976, Figure 6), and Chapin and Shaver (1996, Figure 10),

	T_{OL}	25	°C	refined by calibrating to arctic LTER experimental plots (Chapin et al. 1995). Data were unavailable to use separate values for light capture and carboxylation. The
	a_L	0.3	°C-1	approximate temperature range at Toolik (-46 to 27 oC, between 1994-2003) indicates that we will never use the high end of the curve.
Ps light constant	g_I	35.64	g C m ⁻² leaf hr ⁻¹	Calibrated to U_I
Light extinction	k_I	0.5	$m^2 m^{-2}$	Shaver et al. 2007
Light 1/2 saturation constant	k_{PI}	4	MJ m ⁻² day ⁻¹	Calibrated to photosynthesis light curves (Shaver et al. 2007)
Ps CO ₂ rate constant	g_{C}	0.1095	g C m ⁻² leaf hr ⁻¹	Calibrated to U_C
CO ₂ 1/2 saturation constant	k_C	720	ppm	McMurtrie et al. 1992
	T_{maxC}	100	°C	Values approximated from Johnson and Tieszen (1976, Figure 6), and Chapin and Shaver (1996, Figure 10), refined by calibrating to arctic LTER experimental plots (Chapin et al. 1995)
Temperature response parameters	T_{OC}	25	°C	
for carboxylation	a_C	0.3	°C-1	
Maximum leaf conductance	c_{smax}	20	m hr-1	Williams et al. 1996 - Fig. 9
H ₂ O uptake constant	g_W	0.5443	MPa ⁻¹	Calibrated to U_W
Water uptake factor	k_E	0.0001	$m^2 m^{-1}$	Rastetter et al. 2013
Ca H2O weighting	β	0.01	unitless	Calibrated to match allocation of effort for CO ₂ and H ₂ O
scaler UCc	SUcc	17.15	unitless	Calibrated to U_C
scaler ET	S_{cEt}	25.91	unitless	Calibrated to water uptake and transpiration
Plant Respiration:				
Respiration constant	r_{mA}	0.0369	gC g ⁻¹ N day ⁻¹	Calibrated to NPP
NH4 C cost	ϕ_{NH4}	0.01	$g C g^{-1} N$	Assumed to be negligible relative to other forms of nitrogen

NO ₃ C cost	ϕ_{NO3}	4.6	g C g ⁻¹ N	Gutschick 1981 (p 617) 1/4 to 1/2 N fixation cost
DON C cost	ϕ_{DON}	6	$g C g^{-1} N$	Not known, assuming value is between NO ₃ and N-fixation C costs.
Nfix C cost	ϕ_{Nfix}	9.12	g C g ⁻¹ N	Gutschick 1981
Growth respiration	r_g	0.25	fraction	Waring and Schlesinger, 1985 - Table 2.3
Woody respiration constant	r_{mW}	0.0369	gC g ⁻¹ N day ⁻¹	Calibrated to NPP
Sapwood:hardwood partial exponent	k_{rmW}	1.61E-05	m^2g^{-1} DW	Assume no heartwood
Respiration Q10 slope	m_{Q10R}	-0.0411		Eit to data in Tigally 2001 Table 2
Respiration Q10 intercept	b_{Q10R}	3.202	unitless	Fit to data in Tjoeikei 2001 - Table 2
Plant nutrient uptake:				
Root radius	r_r	0.0005	m	Fahey et al. 2005 - definition of fine root
NH4 uptake constant	g _{NH4}	8.843E-06	g N m ⁻¹ root day ⁻¹	Calibrated to U_{NH4}
Plant NH ₄ 1/2 saturation constant	k_{NH4}	3.84	umol L ⁻¹	Calibrated to arctic LTER experimental plots (Chapin et al. 1995)
NO ₃ uptake const	g_{NO3}	0	g N m ⁻¹ root day ⁻¹	Calibrated to U_{NO3}
Plant NO ₃ 1/2 saturation constant	k _{NO3}	3.84	umol L ⁻¹	Calibrated to arctic LTER experimental plots (Chapin et al. 1995)
PO ₄ uptake constant	g _{PO4}	8.17E-07	g P m ⁻¹ root day ⁻¹	Calibrated to U_{PO4}
Plant PO ₄ 1/2 saturation constant	k _{PO4}	1.6	umol L ⁻¹	Calibrated to arctic LTER experimental plots (Chapin et al. 1995)
DOM uptake constant	g_{DOM}	2.94E-05	g C m ⁻¹ root day ⁻¹	Calibrated to U_{DOM}
Plant DOM 1/2 saturation constant	<i>k</i> _{DOM}	14.208	umol L ⁻¹	$=q_{DOM}*k_{NH4}$
Diffusion constant NH ₄	$D_{\it NH4}$	8.46E-05	$m^2 d^{-1}$	Raynaud and Leadley 2004 - Table 3
Diffusion constant NO ₃	D_{NO3}	4.03E-05	$m^2 d^{-1}$	Raynaud and Leadley 2004 - Table 3

Diffusion constant DON	D_{DOM}	8.46E-05	$m^2 d^{-1}$	Leadley et al. 1997 - Table 2: Diffusive supply of Glycine = NH4)
Diffusion constant PO ₄	D_{PO4}	0.0000239	$m^2 d^{-1}$	Raynaud and Leadley 2004 - Table 3
Q ₁₀ vegetation	Q_{10V}	1.5	unitless	Calibrated to the warming response in Chapin et al 1995; Q10 for all plant uptake processes are assumed to be the same.
Nfix inhibition	N _{fixI}	2	unitless	N fixation turned off for these simulations
N fixation rate constant	g_{Nfix}	0	g N m ⁻¹ root day ⁻¹	
Litter losses:				
Evergreen leaf turnover	m_{AL}	0.001358	day-1	
Wood turnover	m_W	0.0003446	day ⁻¹	Calibrated to $L_C + L_{CWC}$
Root turnover	m_{AR}	0.0009921	day ⁻¹	
Leaf litter N fraction	q_{LNI}	0.008174	g N g ⁻¹ DW	
Wood litter N fraction	q_{WNl}	0.009358	g N g ⁻¹ DW	Calibrated to $L_N + L_{CWN}$
Root litter N fraction	$q_{\scriptscriptstyle RNI}$	0.02286	g N g ⁻¹ DW	
Leaf litter P fraction	q_{LPl}	0.0007489	g P g ⁻¹ DW	
Wood litter P fraction	$q_{\scriptscriptstyle WPl}$	0.001104	g P g ⁻¹ DW	Calibrated to $L_P + L_{CWP}$
Root litter P fraction	q_{RPl}	0.002211	g P g ⁻¹ DW	
Coarse woody turnover	<i>m_{CW}</i>	0.0002738	day ⁻¹	Calibrated to <i>L</i> _{CWC}
Canopy closure woody litter parameters	<i>m_{CWx}</i>	0	day ⁻¹	Assuming no canopy closure
	$k_{\scriptscriptstyle WL}$	NA	m ⁻² g ⁻¹ C	
Coarse litter N fraction	$q_{\it WNwl}$	6.5E-03	g N g ⁻¹ DW	$q_c D_{Nc}/D_{Cc}$
Coarse litter P fraction	$q_{\it WPwl}$	6.5E-04	g P g ⁻¹ DW	$q_c D_{Pc}/D_{Cc}$

Plant acclimation:				
Gain C	C_{gain}	0.8470	none	
Gain N	N_{gain}	0.7593	none	Calibrated to steady state allocation of effort
Gain P	P_{gain}	0.7551	none	
Requirement turnover	τ	0.003	day ⁻¹	assumed ~ 1 yr (Rastetter et al. 2013)
N-yield range	σ_{y}	0.15	none	Assumed yield must be within 15% before alternate N source used.
Acclimation rate	а	0.003	day ⁻¹	assumed ~ 1 yr (Rastetter et al. 2013)
Minimum effort	V _{min}	0.001	effort g ⁻¹ DW	This is set small enough to have little effect on effort budget but large enough for uptake to turn on in timely manner.
Soil processes:				
	ω_o	0.377	pore fraction	Fit to McKane et al. 1997, Figure A1
Microbial moisture response parameters	J_m	1.95	none	
	O min	0.0431	pore fraction	
Microbial Q ₁₀	Q_{10m}	4	none	assumes Q ₁₀ of ~4 (Davidson et al 1998)
Coarse Woody turnover	r _{CW}	0.0003976	day ⁻¹	Calibrated to W_C
Microbial DOM uptake rate	$lpha_{DOM}$	5.995E-06	day ⁻¹	Calibrated to U_{DOMm}
Microbial DOM 1/2 saturation constant	<i>k</i> _{DOMm}	37	umol C L ⁻¹	$=q_{DOM}*k_{NH4m}$
C:N DOM	q_{DOM}	3.7	$g C g^{-1} N$	Average of C:N of all amino acids (Brooker et al. 2008)
C:N DOMR	q_{DOMR}	15.32	$g C g^{-1} N$	Whittinghill 2010
Microbial NH4 uptake rate	$lpha_{NH4}$	2.703E-05	g N m ⁻² day ⁻¹	Calibrated to U_{NH4m}
Maximum microbial C efficiency	\mathcal{E}_C	0.6	none	Hunt et al. 1991 - Table 2
Microbe return C:N	ϕ_N	21.5	$g C g^{-1} N$	Calculated from steady state S_C/S_N

Phase II soil C:N	ϕ_{NII}	21.5	g C g ⁻¹ N	Calculated from steady state S_C/S_N
Microbial NH ₄ 1/2 saturation constant	k _{NH4m}	10	umol N L ⁻¹	Raynaud et al. 2006 - Table 2. Assumes soil water at field capacity.
Microbial NO ₃ uptake rate	$lpha_{NO3}$	1.616E-07	g N m ⁻² day ⁻¹	Calibrated to U_{NO3m}
Microbial NO ₃ 1/2 saturation constant	k _{NO3m}	80	umol N L ⁻¹	Raynaud et al. 2006 - Table 2. Assumes soil water at field capacity
Microbial PO ₄ uptake rate	$lpha_{PO4}$	5.746E-06	g P m ⁻² day ⁻¹	Calibrated to U_{PO4m}
Microbial PO ₄ 1/2 saturation constant	k _{PO4m}	4.15	umol P L ⁻¹	Assumes same ratio of NH ₄ ⁺ :PO ₄ ³⁻ half-saturation constants as for plants
Microbe return C:P	ϕ_{P}	174.9	$g C g^{-1} P$	Calculated from steady state S_C/S_P
Phase II soil C:P	ϕ_{PII}	174.9	g C g ⁻¹ P	Calculated from steady state S_C/S_P
C mineralization constant	ψ_m	0.00020548	day ⁻¹	Calibrated to R_m
N mineralization constant	ψ_{Nm}	7.813E-05	day ⁻¹	Calibrated to R_{Nm}
P mineralization constant	ψ_{Pm}	0.000179624	day ⁻¹	Calibrated to R_{Pm}
DOM production rate	<i>r_{DOM}</i>	6.515E-08	$m^2 g^{-1} N$	Calibrated to P_{DOM}
DOMR production rate	<i>r</i> DOMR	8.92E-09	$m^2 g^{-1} N$	Calibrated to <i>P</i> _{DOMR}
Phase I to phase II transition rate	ξ12	3.711E-05	day ⁻¹	Calibrated to T_{DC12}
Phase II mineralize rate	$ ho_{m2}$	1.345E-05	day ⁻¹	Calibrated to R_{Cm2}
Nitrification rate	r _{Nitr}	0	g N m ⁻²	Calibrated to T_{Ntr}
Nitrification 1/2 saturation constant	<i>k</i> _{Nitr}	8	umol N L ⁻¹	Raynaud et al. 2006 - Table 2. Assumes soil water at field capacity.
Denitrification rate	<i>r</i> _{DNtr}	0	g N m ⁻² day ⁻¹	Calibrated to T_{DNtr}
Denitrification 1/2 saturation constant	k _{DNtr}	80	umol NO ₃ L ⁻¹	Tian et al. 2010 - Table 5. Assumes soil water at field capacity.
Denitrification minimum soil moisture	$ heta_0$	0.39	fraction soil volume	assumed = field capacity
Soil Nfix rate constant	<i>YSfix</i>	4.484E-09	$g^2 N g^{-2} C day^{-1}$	Calibrated to U_{NNSFix}

Soil Nfix critical C:N	<i>q</i> _{Sfix}	21.5	g C g N ⁻¹	Assume that N-fixation stops if C:N of Ph I soil drops below C:N of ph II soil
Soil P transformations:				
°1 mineral weathering rate	r_{PAw}	2.644E-07	day ⁻¹	Calibrated to P_A
°2 mineral formation rate	r_{PO4s}	0.0000225	day ⁻¹	Calibrated to T_{PO4s}
°2 mineral weathering rate	r_{P2w}	2.351E-07	day ⁻¹	Calibrated to <i>P_{no}</i>
Hydrology and material loss:				
soil drain rate	D_w	1	day ⁻¹	sandy loam, Heath 1983
Loss fraction NH ₄	$\eta_{\scriptscriptstyle NH4}$	0.0946	none	Calibrated to L_{NH4}
Loss fraction NO ₃	$\eta_{\scriptscriptstyle NO3}$	0.1345	none	Calibrated to L_{NO3}
Loss fraction PO ₄	η_{PO4}	1.280	none	Calibrated to L_{PO4}
Loss fraction DOM	η_{DOM}	0.2673	none	Calibrated to <i>L</i> _{DOM}
Loss fraction DOMR	η_{DOMR}	1.188	none	Calibrated to <i>L</i> _{DOMR}
Interception volume	Vint	0.394	$mm m^{-2}$	Calibrated to <i>I</i> _{nt}
Non-leaf surface area	eta_{int}	0	$m^2 m^{-2}$	Assumes all interception is on leaves
Branch exponent	η_{br}	0.4	none	Assumes an interception is on leaves
Mid-wood biomass	B_{MW}	100	g DW m ⁻²	Not used; interception on stems turned off
Snowfall critical temp	T_{crt}	0.76	°C	Brubaker et al. 1996
Snowmelt critical temp	T_{crts}	2	°C	Calibrated to timing of snow melt
Latent heat of fusion H ₂ O	C_{NR}	0.334	MJ L ⁻¹	Physical constant
Short wave absorption	C_{SW}	0.1	none	Dunne and Leopold 1978 - Fig. 13.5
Long wave absorption	C_{LW}	18	none	Calibrated to observed snowmelt
Convective coefficient	C_C	2	mm °C-1 day-1	Brubaker et al. 1996

References

- Biesinger, Z., E. B. Rastetter, and B. L. Kwiatkowski. 2007. Hourly and daily models of active layer evolution in arctic soils Ecological Modelling 206:131-146. doi:10.1016/j.ecolmodel.2007.03.030.
- Björk, R. G., H. Majdi, L. Klemedtsson, L. Lewis-Jonsson, and U. Molau. 2007. Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden New Phytologist 176:862-873. doi:10.1111/j.1469-8137.2007.02231.x.
- Bridgham, S. D., C. L. Ping, J. L. Richardson, and K. Updegraff. 2001. Soils of northern peatlands: histosols and gelisols. *In* Richardson, J. L., and M. J. Vepraskas, editors. Wetland soils; their genesis, hydrology, landscape and separation into hydric and nondydric soils, Ann Arbor Press, .
- Brubaker, K., A. Rango, and W. Kustas. 1996. Incorporating radiation inputs into the snowmelt runoff model. Hydrological Processes 10:1329-1343.
- Chapin, F. S., III, R. J. Barsdate, and D. Barèl. 1978. Phosphorus cycling in Alaskan coastal tundra: A hypothesis for the regulation of nutrient cycling. Oikos 31:189-199.
- Chapin, F. S.,III, G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, and J. A. Laundre. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694-711.
- Davidson, E. A., E. Belk, and R. D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest Global Change Biology 4:217-227. doi:10.1046/j.1365-2486.1998.00128.x.
- Dennis, J. G. 1977. Distribution patterns of belowground standing crop in Arctic tundra at Barrow, Alaska. Arctic and Alpine Research 9:113-127.
- Dunne, T., and L. B. Leopold. 1978. Water in Environmental Planning. W.H. Freeman and Company, New York, NY.
- Fahey, T. J., T. G. Siccama, C. T. Driscoll, G. E. Likens, J. Campbell, C. E. Johnson, J. J.
 Battles, J. D. Aber, J. J. Cole, M. C. Fisk, P. M. Groffman, S. P. Hamburg, R. T. Holmes, P.
 A. Schwarz, and R. D. Yanai. 2005. The biogeochemistry of carbon at Hubbard Brook.
 Biogeochemistry 75:109-176.
- Giblin, A. E., K. J. Nadelhoffer, G. R. Shaver, J. A. Laundre, and A. J. McKerrow. 1991. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecological Monographs 61:415-435.
- Gough, L., D. Johnson, B. Moon, J. Knight, A. Treuer, C. Moulton, and C. Jordan. 2009. Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska. : doi:10.6073/pasta/d0bb465790568a81e32f1343852b9531.
- Gutschick, V. P. 1981. Evolved strategies in nitrogen acquisition by plants. The American Naturalist 118:607-637.
- Heath, R. 1983. Basic ground-water hydrology. US Geological Survey Water-supply paper 2220. United States Government Printing Office, Alexandria, VA.
- Hobara, S., C. McCalley, K. Koba, A. E. Giblin, M. S. Weiss, G. M. Gettel, and G. R. Shaver. 2006. Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: A key source of atmospheric nitrogen. Arctic, Antarctic, and Alpine Research 38:363-372.
- Hobbie, S. E., and L. Gough. 2002. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia 131:453-462.

- Hobbie, S. E., and F. S. Chapin III. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO₂ flux to experimental warming. Ecology 79:1526-1544.
- Hunt, H. W., M. J. Trlica, E. F. Redente, J. C. Moore, J. K. Detling, T. G. F. Kittel, D. E. Walter, M. C. Fowler, D. A. Klein, and E. T. Elliott. 1991. Simulation model for the effects of climate change on temperate grassland ecosystems Ecological Modelling 53:205-246. doi:10.1016/0304-3800(91)90157-V.
- Johnson, D. A., and L. L. Tieszen. 1976. Aboveground biomass allocation, leaf growth, and photosynthesis patterns in tundra plant forms in Arctic Alaska. Oecologia 24:159-173.
- Kane, D. 1997. The impact of hydrologic perturbations on Arctic ecosystems induced by climate change. Pages 63-81 *In* Oechel, W. C., T. Callaghan, T. Gilnanov, J. I. Holten, B. Maxwell, U. Molau, and B. Sveinbjornsson, editors. Global Change and Arctic Terrestrial Ecosystems, Springer, New York, NY.
- Kirkby, C. A., J. A. Kirkegaard, A. E. Richardson, L. J. Wade, C. Blanchard, and G. Batten. 2011. Stable soil organic matter: A comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 161:197-208.
- Leadley, P. W., J. F. Reynolds, and F. S. Chapin III. 1997. A model of nitrogen uptake by Eriophorum Vaginatum roots in the field: ecological implications. Ecological Monographs 67:1-22.
- Mack, M. C., E. A. Schuur, M. S. Bret-Harte, G. R. Shaver, and F. S. Chapin. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization Nature 431:440-443. doi:10.1038/nature02887 [doi].
- McDowell, W. H., A. Zsolnay, J. A. Aitkenhead-Peterson, E. G. Gregorich, D. L. Jones, D. Jödemann, K. Kalbitz, B. Marschner, and D. Schwesig. 2006. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biology and Biochemistry 38:1933-1942.
- McKane, R. B., E. B. Rastetter, G. R. Shaver, K. J. Nadelhoffer, A. E. Giblin, J. A. Laundre, and F. S. Chapin. 1997. Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology 78:1170-1187.
- McMurtrie, R. E., H. N. Comins, M. U. F. Kirschbaum, and Y. Wang. 1992. Modifying Existing Forest Growth Models to take account of effects of Elevated CO₂. Austrialian Journal of Botany 40:657-677. doi:10.1071/BT9920657.
- Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Pages 53-62 *In* Clarholm, M., and L. Bergström, editors. Ecology of Arable Land - Perspectives and Challenges, Springer Netherlands, .
- Mikolajkow, J. 2003. Laboratory methods of estimating the retardation factor of migrating mineral nitrogen compounds in sallow groundwater. Geological Quarterly 47:91-96.
- Nadelhoffer, K., G. R. Shaver, and A. E. Giblin. 1995. Carbon, nitrogen, and phosphorus content in the seasonally thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station, Arctic LTER 1993. :
 - doi:doi:10.6073/pasta/aef8cdbace6b521e480bcc6f2ddb9546.
- Nadelhoffer, K. J., B. A. Emmett, P. Gundersen, O. J. Kjønaas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145-148. doi:10.1038/18205.
- Oosterwoud, M. R., E. J. M. Temminghoff, and S. E. A. T. M. van der Zee. 2010. Quantification of DOC concentrations in relation with soil properties of soils in tundra and taiga of

Northern European Russia Biogeosciences Discussions 7:3189 <last_page> 3226. doi:10.5194/bgd-7-3189-2010.

- Ostonen, I., Ü. Püttsepp, C. Biel, O. Alberton, M. R. Bakker, K. Lõhmus, H. Majdi, D. Metcalfe, A. F. M. Olsthoorn, A. Pronk, E. Vanguelova, M. Weih, and I. Brunner. 2007. Specific root length as an indicator of environmental change Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 141:426-442. doi:10.1080/11263500701626069.
- Rastetter, E. B., P. M. Vitousek, C. Field, G. R. Shaver, D. Herbert, and G. I. Ågren. 2001. Resource optimization and symbiotic nitrogen fixation. Ecosystems 4:369-388.
- Rastetter, E. B., R. D. Yanai, R. Q. Thomas, M. A. Vadeboncoeur, T. J. Fahey, M. C. Fisk, B. L. Kwiatkowski, and S. P. Hamburg. 2013. Recovery from disturbance requires resynchronization of ecosystem nutrient cycles Ecological Applications 23:621-642. doi:10.1890/12-0751.1.
- Raynaud, X., J. Lata, and P. W. Leadley. 2006. Soil microbial loop and nutrient uptake by plants: a test using a coupled C:N model of plant-microbial interactions. Plant and Soil 287:95-116. doi:10.1007/s11104-006-9003-9.
- Raynaud, X., and P. W. Leadley. 2004. Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology 85:2200-2214.
- Redfield, A. C. 1958. The biological control of chemical factors in the environment. American Scientist 46:205-221.
- Schimel, J. P., and F. S. Chapin III. 1996. Tundra plant uptake of amino acid and NH4⁺ nitrogen in situ: Plants compete well for amino acid N. Ecology 77:2142-2147.
- Shaver, G. R., and J. A. Laundre. 2006a. Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988 to 2007. : doi:10.6073/pasta/cb6e3030fb69d2bf9549d8fe529a67fd.
- Shaver, G. R., and J. A. Laundre. 2006b. Late season thaw depth measured in the ARC LTER moist acidic tussock experimental plots at Toolik Field Station, AK Arctic LTER 1993 to current year. : doi:10.6073/pasta/e7c2be020f700c6452554f56e23bcdb4.
- Shaver, G. R., and J. A. Laundre. 2002. Daily weather data file for Arctic Tundra LTER site at Toolik Lake, Arctic LTER 2000. : doi:10.6073/pasta/66b4074425afab3f20eb2817f0e79966.
- Shaver, G. R., L. E. Street, E. B. Rastetter, M. T. VanWijk, and M. Williams. 2007. Functional convergence in regulation of net CO₂ flux in heterogeneous tundra landscapes in Alaska and Sweden. Journal of Ecology 95:802-817.
- Shaver, G. R., F. S. Chapin III, J. A. Laundre, M. S. Bret-Harte, and M. C. Mack. 2006. Year 2000 data in Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska. : doi:10.6073/pasta/5cc889e7055d3d4e55cc243025986018.
- Shaver, G. R., and Chapin III F. Stuart. 1991. Production:Biomass relationships and element cycling in contrasting Arctic vegetation types. Ecological Monographs 61:1-31.
- Shaver, G. R., M. S. Bret-Harte, M. H. Jones, J. Johnstone, L. Gough, J. A. Laundre, and F. S. Chapin III. 2001. Species Composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163-3181.
- Sullivan, P. F., M. Sommerkorn, H. M. Rueth, K. J. Nadelhoffer, G. R. Shaver, and J. M. Welker. 2007. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153:643-652.
- Tian, H., X. Xu, M. Liu, W. Ren, C. Zhang, G. Chen, and C. Lu. 2010. Spatial and temporal patterns of CH₄ and N₂O fluxes in terrestrial ecosystems of North America during 1979–

2008: application of a global biogeochemistry model. Biogeosciences 7:2673-2694. doi:10.5194/bg-7-2673-2010.

- Tjoelker, M. G., J. Oleksyn, and P. B. Reich. 2001. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10 Global Change Biology 7:223 <last_page> 230. doi:10.1046/j.1365-2486.2001.00397.x.
- Vandenbruwane, J., S. De Neve, R. G. Qualls, S. Sleutel, and G. Hofman. 2007. Comparison of different isotherm models for dissolved organic carbon (DOC) and nitrogen (DON) sorption to mineral soil Geoderma 139:144-153. doi:10.1016/j.geoderma.2007.01.012.
- Vincent, A. A. 2006. Evaluation of phosphorus transport and transformations in GLEAMS 3.0. :.
- Waring, R. H., and W. H. Schlesinger. 1985. Forest ecosystems; concepts and management. Academic Press, Orlando, FL.
- Waring, R. H., J. J. Landsberg, and M. Williams. 1998. Net primary production of forests: a constant fraction of gross primary production? Tree physiology 18:129-134. doi:10.1093/treephys/18.2.129.
- Whittinghill, K. A. 2010. Effect of topography and glaciation history on the movement of carbon and nitrogen within arctic hillsides. :.
- Williams, M., E. B. Rastetter, D. N. Fernandes, M. L. Goulden, S. C. Wofsy, G. R. Shaver, J. M. Melillo, J. W. Munger, S. M. Fan, and K. J. Nadelhoffer. 1996. Modelling the soil-plant-atmosphere continuum in a *Quercus-Acer* stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen, and soil/plant hydraulic properties. Plant, Cell and Environment 18:911-927. doi:10.1111/j.1365-3040.1996.tb00456.x.
- Yanai, R. D. 1992. Phosphorus budget of a 70-year-old northern hardwood forest. Biogeochemistry 17:1-22.
- Yano, Y., G. R. Shaver, A. E. Giblin, E. B. Rastetter, and K. J. Nadelhoffer. 2010. Nitrogen dynamics in a small arctic watershed: retention and downhill movement of ¹⁵N. Ecological Monographs 80:331-351.