Huso, M. M. P., D, Dalthorp, L. Madsen, and D. Dail. 2015. Estimating turbine-caused bird and bat fatality when zero carcasses are observed. Ecological Applications 25:1213-1225.

APPENDIX A

Expectation and variance of overall probability of detection \boldsymbol{g} across multiple independent areas or time periods.

Let n be the number of areas (e.g., sites, detection classes, turbine sets) or time periods (e.g., seasons, years) for which detection probabilities may differ and for which data (counts, detection probabilities, relative weights) are available. We estimate the total number of fatalities by calculating a pooled overall detection probability as the weighted average of detection probabilities over all sites and then applying Bayes’ formula to the collection of sites considered as a single entity. The method for calculating a pooled g is described below.

Let G_{k} be a random variable for the conditional detection probability of a carcass that arrives at site k and let $\mathrm{E} G_{k}=g_{k}$ and $\mathrm{V} G_{k}=\sigma_{k}^{2}$.

Let $A_{k}=M_{k} / M$ be a random variable for the proportion of the total carcasses landing in site i, where $M=\sum_{k} M_{k}$ and $M_{k} \sim \operatorname{Poisson}\left(\lambda_{k}\right)$ are independent.

Then, let G be a random variable for the probability of detecting a carcass that arrives at one of the sites during the study period. We have: $G=\sum_{k} G_{k} A_{k}=$
$\sum_{k} P$ (observe carcass \mid carcass arrives at site $\left.k\right) P($ carcass arrives at site k)
Define $g=\mathrm{E} G=\mathrm{E}\left[\sum G_{k} A_{k}\right]=\sum \mathrm{E}\left[G_{k} A_{k}\right]$. But $\mathrm{E}\left[G_{k} A_{k}\right]=\mathrm{E} G_{k} \cdot \mathrm{E} A_{k}$ because G_{k} and $A_{i k}$ are independent. Define $\mathrm{E} G_{k}=g_{k}$ and note that $\mathrm{E} A_{k}=\mathrm{E}\left[M_{k} / M\right] \cong \frac{\lambda_{k}}{\lambda}\left(1+\frac{1}{\lambda}\right)-\operatorname{cov}\left(M_{k}, M\right) / \lambda^{2}$ (Mood et al. 1974). But $M=M_{k}+M^{\prime}$, where $M^{\prime}=\sum_{j \neq k} M_{j}$ and the M_{j} are independent. Thus,
$\operatorname{cov}\left(M_{k}, M\right)=\operatorname{cov}\left(M_{k}, M_{k}+M^{\prime}\right)=\operatorname{cov}\left(M_{k}, M_{k}\right)+\operatorname{cov}\left(M_{k}, M^{\prime}\right)=\mathrm{V} M_{k}+0=\lambda_{k}$, so $\mathrm{E} A_{k} \cong$ $\frac{\lambda_{k}}{\lambda}$, which we'll define as a_{k}, or the expected proportion of carcasses landing at site k.

Therefore, we have:

$$
\mathrm{E} G \cong \sum g_{k} \lambda_{k} / \lambda
$$

The variance of G is given by
$\mathrm{V} G=\mathrm{V}\left[\sum G_{k} A_{k}\right]=\mathrm{V}\left[\sum G_{k} M_{k} / M\right] \cong \sum a_{k}^{2} \sigma_{k}^{2}+1 / \lambda \sum a_{k}\left(g_{k}^{2}+\sigma_{k}^{2}\right)-g^{2} / \lambda($ Mood et al.
1974), which can be shown in several steps. For $n=2, \mathrm{~V}\left[A_{1} G_{1}+A_{2} G_{2}\right]=\mathrm{V}\left[\frac{M_{1} G_{1}+M_{2} G_{2}}{M}\right]$
$\cong\left(\mu_{X} / \mu_{M}\right)^{2}\left(\frac{\sigma_{X}^{2}}{\mu_{X}^{2}}+\frac{\sigma_{M}^{2}}{\mu_{M}^{2}}-\frac{2 \operatorname{cov}(X, M)}{\mu_{X} \mu_{M}}\right)$, where $X=M_{1} G_{1}+M_{2} G_{2}$ and the μ and σ^{2} terms represent the means and variances of their subscripted variables. The components of the expression are calculated below.

1. $\mu_{M}=\sigma_{M}^{2}=\lambda$
2. $\mu_{X}=\lambda_{1} g_{1}+\lambda_{2} g_{2}$
3. $\sigma_{X}^{2}=\mathrm{V}\left[M_{1} G_{1}+M_{2} G_{2}\right]=\mathrm{V}\left[M_{1} G_{1}\right]+\mathrm{V}\left[M_{2} G_{2}\right]$, since carcasses both arrive independently and are observed independently at different sites, and $\mathrm{V}\left[M_{k} G_{k}\right]=\mathrm{E}^{2} M_{k} \cdot \mathrm{~V} g_{k}+\mathrm{E}^{2} g_{k} \cdot \mathrm{~V} M_{k}+$ $\mathrm{V} g_{k} \cdot \mathrm{~V} M_{k}=\lambda_{k}^{2} \sigma_{k}^{2}+g_{k}^{2} \lambda_{k}+\sigma_{k}^{2} \lambda_{k}$ for $k=1,2, \operatorname{so} \mathrm{~V}[X]=\sum \lambda_{k}^{2} \sigma_{k}^{2}+\sum \lambda_{k}\left(g_{k}^{2}+\sigma_{k}^{2}\right)$
4. $\operatorname{cov}[X, M]=\operatorname{cov}\left[M_{1} G_{1}+M_{2} G_{2}, M\right]=\operatorname{cov}\left[M_{1} G_{1}, M_{1}+M_{2}\right]+\operatorname{cov}\left[M_{2} G_{2}, M_{1}+M_{2}\right]$
$=\operatorname{cov}\left[M_{1} G_{1}, M_{1}\right]+\operatorname{cov}\left[M_{1} G_{1}, M_{2}\right]+\operatorname{cov}\left[M_{2} G_{2}, M_{1}\right]+\operatorname{cov}\left[M_{2} G_{2}, M_{2}\right]$. The middle two terms are zero because the sites are independent. The first and last terms are calculated as

$$
\begin{aligned}
& \operatorname{cov}\left[M_{k} G_{k}, M_{k}\right]=\mathrm{E}\left[G_{k} M_{k}^{2}\right]-\mathrm{E}\left[M_{k} G_{k}\right] \mathrm{E}\left[M_{k}\right]=\mathrm{E} G_{k} \cdot \mathrm{E} M_{k}^{2}-\mathrm{E} G_{k} \mathrm{E}^{2} M_{k} \\
& =\mathrm{E} G_{k}\left(\mathrm{E} M_{k}^{2}-\mathrm{E}^{2} M_{k}\right)=g_{k} \lambda_{k}, \text { so } \operatorname{cov}[X, M]=g_{1} \lambda_{1}+g_{2} \lambda_{2}
\end{aligned}
$$

Combining the terms into the original expression gives:
$\mathrm{V} G \cong\left(\frac{\lambda_{1} g_{1}+\lambda_{2} g_{2}}{\lambda}\right)^{2}\left(\frac{\lambda_{1}^{2} \sigma_{1}^{2}+\lambda_{2}^{2} \sigma_{2}^{2}+\lambda_{1}\left(g_{1}^{2}+\sigma_{1}^{2}\right)+\lambda_{2}\left(g_{2}^{2}+\sigma_{2}^{2}\right)}{\left(\lambda_{1} g_{1}+\lambda_{2} g_{2}\right)^{2}}+\frac{\lambda}{\lambda^{2}}-2 \frac{g_{1} \lambda_{1}+g_{2} \lambda_{2}}{\left(g_{1} \lambda_{1}+g_{2} \lambda_{2}\right) \lambda}\right)=$
$\frac{\lambda_{1}^{2} \sigma_{1}^{2}+\lambda_{2}^{2} \sigma_{2}^{2}+\lambda_{1}\left(g_{1}^{2}+\sigma_{1}^{2}\right)+\lambda_{2}\left(g_{2}^{2}+\sigma_{2}^{2}\right)}{\lambda^{2}}-\frac{g^{2}}{\lambda}$, which can be rewritten as:

$$
\mathrm{V} G \cong \sum a_{k}^{2} \sigma_{k}^{2}+\frac{\sum a_{k}\left(g_{k}^{2}+\sigma_{k}^{2}\right)-g^{2}}{\lambda}
$$

By mathematical induction, the sums can be taken over $k=1, \ldots, n$.
The calculations are identical if we are considering n time periods instead of n areas.

