Johannes Radinger and Christian Wolter. 2015. Disentangling the effects of habitat suitability, dispersal, and fragmentation on the distribution of river fishes. Ecological Applications 25:914–927. http://dx.doi.org/10.1890/14-0422.1
Supplement
GRASS-Python script to run FIDIMO for several species; derived data set and corresponding R code to calculate GLMMs and create interaction plots.
Ecological Archives A025-055-S1.
Authors
File list (downloads)
Description
Johannes Radinger
Leibniz-Institute of Freshwater Ecology and Inland Fisheries
Müggelseedamm 310
12587 Berlin
Germany
E-mail: [email protected]
Christian Wolter
Leibniz-Institute of Freshwater Ecology and Inland Fisheries
Müggelseedamm 310
12587 Berlin
Germany
File list
01_GRASS_FIDIMO_analysis.py (MD5: 9beacd30eddc5c18906c26337a69ee0e)
02_habitat_dispersal_barriers_raw_data.csv (MD5: 6b9d8d5a7724f4dcea462279bfda36c3)
03_GLMM_habitat_dispersal_barriers.R (MD5: cbbde806275b0ae2b39c4843aa117253)
04_Plots_GLMM_interactions.R (MD5: 4da402149c5a3473b4295b574f021da9)
Description
01_GRASS_FIDIMO_analysis.py – Commented Python code to run the dispersal model FIDIMO within a GRASS session. The script provides a FIDIMO calculation in loops for (i) 17 species, (ii) nine time intervals (1-9 years) and (iii) inclusive/exclusive barriers. The species-specific parameters for the model internal calculation of the dispersal distances are included in the script. Species' presence points (site name, catch per unit effort, site ID, X, Y) are used as FIDIMO input file (ascii point file).
02_habitat_dispersal_barriers_raw_data.csv – Derived data set including all information used for running the generalized linear mixed models (GLMM).
Columns are as follows:
row number (numeric; 1:20672)
SiteID Site specific ID (numeric)
species Species Code (character, species code)
presabs Presence of a species (0: Absence, 1: Presence)
L Species-specific common length [mm] (numeric)
AR Aspect ratio of the caudal fin [-] (numeric)
variable Variable name (MaxEnt output, Disperal probability, Barrier effects), e.g. "point_fidimo_corrected_9y" (character)
value value of the corresponding variable
03_GLMM_habitat_dispersal_barriers.R – R code for running generalized linear mixed models using 02_habitat_dispersal_barriers_raw_data.csv as input data set.
04_Plots_GLMM_interactions.R – R code for plotting interaction effects of the output of the GLMM.
ESA Publications | Ecological Archives | Permissions | Citation | Contacts