
APPENDIX C: SENSITIVITY ANALYSIS OF MULTI-SCALE SIR MODEL WITH 
EXPONENTIALLY DISTRIBUTED INFECTIOUS PERIOD 

 

Methods 

 

To investigate how the spatial configuration of counties and spatial heterogeneities influence long-term 

epidemic dynamics, we compared our multi-scale SIR model with exponentially distributed extirpation 

time simulation results initialized in Schoharie County with 250 simulations initialized in the northwest 

(Clackamas County, Oregon), southwest (Pima County, Arizona), southeast (Gadsden County, Florida) 

and in the interior highlands (Marion County, Arkansas). Counties from the northwest, southwest and 

southeast regions were chosen to represent geographically distinct nodes that are distant from Schoharie 

County in the landscape graph. Marion County in Arkansas was selected because it is located in a region 

of high cave density (Fig. A3). To ascertain which counties are at the greatest risk of infection and if 

disease risk is greater close to the epidemic epicenter, we generated heat maps indicating the fraction of 

simulations for which each county was infected (Figs. C1–C4). To investigate how location of the 

introduction and spatial configuration of the landscape impact long-term epidemic dynamics and to 

clarify the factors that determine the final size of the epidemic, we generated the epidemic final size 

distribution, incidence and prevalence statistics from these simulations (Figs. C6–C8). To determine the 

sensitivity of our results to county-level heterogeneities, we executed 1,000 simulations of the epidemic 

starting from Schoharie County assuming time to epidemic burnout was ten years for all counties (the 

median county-level epidemic duration). This ensured that all infected nodes were eliminated from the 

graph ten years following year of infection (Fig. C5). To investigate the influence of climate 

heterogeneities on long-term epidemic dynamics, we initialized 250 simulations from Clackamas County, 

Oregon, assuming an homogeneous winter duration, equal to the longest winter, in all counties (Fig. C9). 

 

 



Results 

 

We assessed the influence of different spatial initial conditions on spatiotemporal spread of the infection.  

Figs. C1–C3 show that geographic regions with large numbers of hibernacula and highly connected 

habitat, such as the northeast and Ozarks, have the greatest risk of infection. This result indicates that the 

long-term infection risk of these key regions is insensitive to the location of the county in which the 

infection may be first detected. However, infections initialized in Gadsden County, Florida, fail to take 

off (Fig. C4). The climate in this region leads to stochastic fadeout of the infection before establishment. 

It is also interesting to note that in contrast to infections introduced to Schoharie County and Marion 

County in Arkansas (Figs. B2 and C1 respectively), which are located within highly connected landscape, 

most counties close to the site of introduction in Figs. C2 and C3 do not have a near-certain probability of 

infection. This suggests that the high final epidemic sizes for the regional bat population in the northeast 

calculated in Fig. 3 in the main text are not resulting from proximity to the origin of the introduction, but 

are due to the features of the northeastern landscape, which provide the ideal conditions for rapid 

propagation of WNS. These results support the hypothesis that geographic corridors facilitate the spread 

of WNS (Maher et al. 2012). 

Theory predicts bimodality of the epidemic final size distribution, i.e., there is a non-zero 

probability of stochastic fadeout before the epidemic takes off (Daley and Gani, 2001). Fig. C6 shows the 

epidemic final size distributions computed from simulations initialized in the interior highlands (A), 

southeast (B), northwest (C), southwest (D) and Schoharie County (E). Not surprisingly, the macro-scale 

epidemic failed to take off from a single introduction in Florida, a sub-tropical region with a short winter, 

in 87% of simulations (Fig. C6(B)). For the epidemics that did take off, the median final size was 85%. 

While the location of the epidemic origin did not affect median final size (at ~85% for all epicenters 

except Florida), it did impact the shape of the final size distribution. A single introduction to the 

northwest and southwest both led to a non-zero probability of no epidemic (bimodal final size distribution 

with 4% and 14% of simulations with no epidemic respectively (Figs. C6(C) and C6(D)). By contrast, the 



final size distribution of epidemics originating from the interior highlands was unimodal about the mean, 

similar to that from Schoharie County (Figs. C6(A) and C6(E)). We additionally note that the final size 

distribution of epidemics with Schoharie County as the epicenter only becomes bimodal for extremely 

short hibernaculum extirpation times (approximately less than 100 days), suggesting that there is a very 

low probability of stochastic fadeout for infections introduced to the main geographic corridor.  

To investigate how location of the introduction and spatial configuration of the landscape impact 

epidemic dynamics, we generated macro-scale incidence (number of newly infected counties) and 

prevalence (proportion of infected counties) statistics (Figs. C7–C9). In contrast to epidemics beginning 

in Schoharie County, the propagation of the infection was much slower and subject to greater stochastic 

variability in simulations initialized in the northwest and southwest, with prevalence and incidence not 

peaking until the 2020s and 2030s respectively (Figs. C7 and C8, (C) and (D)). However, median 

incidence and prevalence calculated from epidemics initialized from the interior highlands closely 

resembled those initialized from Schoharie County. From this analysis we conclude that epidemic take off 

is more likely to be slower and subject to greater stochasticity in regions that are warmer and are isolated 

from the main mountainous regions of the West, the Appalachians and the Ozarks, where hibernacula are 

plentiful (Culver et al. 1999, Humphrey 1975) . Moreover, there is a non-zero probability of no epidemic 

in these isolated regions. 

We also determined the impact of landscape heterogeneities on epidemic dynamics by 

considering homogeneity of nodes in epidemic and winter durations (i.e., the largest mean number of days 

below 10 °C) separately. Assuming homogeneous county-scale epidemics with durations equal to the 

median duration of ten years, we found that the final size distribution was unimodal with a mean of 77% 

(Fig C6(F)), slightly less than that predicted by the multi-scale SIR model, and median prevalence 

dropped off sharply (Fig C7(D)). Fig. C5 indicates that the probability of spread to the western seaboard 

is only slightly reduced, with the key regions of the Appalachians, interior highlands and West predicted 

to be infected with very high probability. However, spread under this model to western and southern 

Texas, a region with a large number of potential hibernacula, was found to be less likely, suggesting that 



the large numbers of potential hibernacula will facilitate spread in that region. In addition, we investigated 

if long winters in every county would lead to faster spread in the initial stages of the epidemic from a 

more isolated region. Simulating epidemics from Clackamas County, Oregon, leads to a final mean 

epidemic size of ~99%, and the probability that the epidemic does not take off is near zero. However, 

county homogeneity in winters of long duration does not remove the stochastic variability in the initial 

propagation of the infection (cf. Figs. C9(A) and C7(C), Figs. C9(B) and C8(C)). Take off is still slow, 

and propagation of the infection is likely to be via long-distance jump dispersal. However, once the 

infection reaches the main cave-bearing corridors, spread of WNS is rapid, and is accelerated by the 

homogeneity in winters of long duration. We conclude that long winters alone will not lead to explosive 

spread of the infection but temperature gradients and geographic corridors together facilitate rapid 

expansion of the disease. These results suggest that county heterogeneities are likely to contribute to both 

the initial propagation of the epidemic and the final size of the macro-scale epidemic. 

 



SUPPORTING FIGURES FOR SENSITIVITY ANALYSIS 

FIG. C1. The spread of White-nose Syndrome in the contiguous United States, given a single introduction 

to the interior highlands. Counties are colored according to the fraction of simulations that they were 

infected with WNS out of 250 simulations. All simulations were initialized using a single infected county 

(Marion County, Arkansas) in the interior highlands. Counties colored grey have no caves and were 

excluded from the model. The pattern of infection is similar to Fig. B2. 



 

FIG. C2. The spread of White-nose Syndrome in the contiguous United States, given a single introduction 

to the northwest. Counties are colored according to the fraction of simulations that they were infected 

with WNS out of 250 simulations. All simulations were initialized using a single infected county 

(Clackamas County, Oregon) in the northwest. Counties colored gray have no caves and were excluded. 

The pattern of infection is similar to Fig. B2. Close to the origin the probability of infection is higher than 

in Fig. B2 but the probability of spread to the northeast is still very high. 



FIG. C3. The spread of White-nose Syndrome in the contiguous United States, given a single introduction 

to the southwest. Counties are colored according to the fraction of simulations that they were infected 

with WNS out of 250 simulations. All simulations were initialized using a single infected county (Pima 

County, Arizona) in the southwest. Counties colored grey have no caves and were excluded from the 

model. The pattern of infection is similar to Fig. B2. Close to the origin the probability of infection is 

higher than in Fig. B2 but the probability of spread to the northeast is still very high. 



FIG. C4. The spread of White-nose Syndrome in the contiguous United States, given a single introduction 

to the southeast. Counties are colored according to the fraction of simulations that they were infected with 

WNS out of 250 simulations. All simulations were initialized using a single infected county (Gadsden 

County, Florida) in the southeast. Counties colored grey have no caves and were excluded from the 

model.  



FIG. C5. The spread of White-nose Syndrome in the contiguous United States, given a homogeneous 

epidemic duration of 10 years in each county. Counties are colored according to the fraction of 

simulations that they were infected with WNS out of 1,000 simulations. All simulations were initialized 

with Schoharie County, New York. Counties colored gray have no caves and were excluded from the 

model. The pattern of infection is fairly similar to Fig. B2 but regions of the southeast and Texas are less 

likely to be infected. 



 

FIG. C6. Macro-scale final size distributions. (A) (B) (C) and (D) The final size distribution for 250 

simulations that begin in the interior highlands, southeast, southwest and northwest respectively. There is 

a non-zero probability that no macro-scale epidemic will occur in (B), (C) and (D). (E) The macro-scale 

final size distribution for 10,000 simulations that begin in Schoharie County (the mean of this distribution 

is marked by the cross in Fig. 3 of the main text). (F) The macro-scale final size distribution for 1,000 

simulations that begin in Schoharie County but assume equal durations of the epidemic in each node. 

Final sizes in this case are lower than those in (E). 



 

FIG. C7. Macro-scale prevalence of infection following introduction of WNS to different locations. Solid 

lines are median values and dashed lines represent 95% prediction intervals. (A) Prevalence of infection 

following introduction of WNS to the interior highlands closely resembles prevalence statistic from 

Schoharie County in Fig. 2b of the main text. (B) Prevalence following introduction of WNS to the 

northwest slowly increases, peaking in the winter of 2034–2035. (C) Prevalence following introduction of 

WNS to the south west slowly increases, peaking in 2030–2031. Prevalence in (A), (B) and (C) declines 

at approximately the same rate. (D) Prevalence assuming homogeneous epidemic durations peaks in 

2018–2019 but falls off much more rapidly than Fig 2b of the main text. 



 

FIG. C8. Macro-scale incidence of infection following introduction of WNS to different locations. Solid 

lines are median values and dashed lines represent 95% prediction intervals. (A) Incidence of 

infection following introduction of WNS to the interior highlands closely resembles incidence statistic 

from Schoharie County in Fig. 2a of the main text, with peak occurring in the winter of 2013–2014. (B) 

Incidence following introduction of WNS to the northwest slowly increases, peaking in the winter of 

2028–2029. (C) Incidence following introduction of WNS to the south west slowly increases, peaking in 

2025–2026. (D) Incidence assuming homogeneous epidemic durations peaks in 2013–2014. 



 

FIG. C9. Macro-scale incidence and prevalence of the infection assuming homogeneous winter duration 

and introduction of the infection to Clackamas County, Oregon. Solid lines are median values and dashed 

lines represent 95% prediction intervals. (A) Incidence of the infection is highly stochastic, due to jump 

dispersal of the infection. (B) Peak prevalence of the infection is very high, as a result of the long winters 

in each county. 
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