${ }_{2}$ Summer L. Martin, Stephen M. Stohs, Jeffrey E. Moore. 2015. Ecological Applications 25:416-429.

APPENDIX A. Theoretical Basis for Estimating

s Rare-Event Bycatch Using a Bayesian Approach.

For a single species (e.g., leatherbacks), we use a Poisson likelihood function to model the stochastic dependence of x_{i}, the number of observed takes in year i, on θ, the per-set take rate parameter, and n_{i}, the number of observed sets in year i :

$$
\begin{equation*}
f\left(x_{i} \mid \theta, n_{i}\right)=e^{-\theta n_{i}} \frac{\left(\theta n_{i}\right)^{x_{i}}}{x_{i}!} \tag{A.1}
\end{equation*}
$$

6
where $\theta n_{i}=\lambda_{i}$ is the Poisson rate (mean) parameter. Previous studies have also used the Poisson distribution to model bycatch (NMFS 2004, Pradhan and Leung 2006, Gardner et al. 2008, Murray 2009, 2011) because it can characterize data in which each observation has a high probability for a zero count, a small probability for a count of one, and an infinitesimal probability for a count of two or more. The DGN fishery data have these Poisson characteristics plus one more: a mean per-set take rate $\left(2.944 \times 10^{-3}\right)$ roughly equal to the variance $\left(2.936 \times 10^{-3}\right)$. A strong positive correlation between the numbers of observed takes and sets per year (Pearson's $r=0.672 ; \mathrm{p}=0.001$; Figures 1 and 2) supports including the number of sets in the model. We assume statistical independence of all sets and takes.

We use a conjugate gamma prior distribution for θ :

$$
\begin{equation*}
p(\theta) \propto e^{-\beta \theta} \theta^{\alpha-1} \tag{A.2}
\end{equation*}
$$

which constrains θ to be positive. After applying Bayes' rule, the posterior density,

$$
\begin{gather*}
p\left(\theta \mid n_{i}, x_{i}\right) \propto f\left(x_{i} \mid \theta, n_{i}\right) p(\theta) \tag{A.3}\\
\quad \propto e^{-\left(\beta+n_{i}\right) \theta} \theta^{\alpha+x_{i}-1} \tag{A.4}
\end{gather*}
$$

$\alpha=0$ and $\beta=0$, yielding

$$
\begin{equation*}
p(\theta)=\theta^{-1}, 0<\theta<\infty \tag{A.5}
\end{equation*}
$$

which is diffuse and improper (does not integrate over the support). This prior reflects ignorance about θ before observing the data, and places the greatest weight on values near zero. The resulting posterior,

$$
\begin{equation*}
p\left(\theta \mid n_{i}, x_{i}\right) \propto e^{-\theta n_{i}} \theta^{x_{i}-1} \tag{A.6}
\end{equation*}
$$

is also a gamma distribution, $\Gamma\left(\alpha+x_{i}, \beta+n_{i}\right)$, with a form that suggests interpreting α and β as the prior numbers of observed takes and sets from previous years, respectively, before observing the current year's sample of x_{i} takes in n_{i} sets.

Following this interpretation, a noninformative prior could be specified by assigning
bears formal similarity to the likelihood function, but now summarizes reasonable beliefs about θ in light of the current observation of x_{i}. The posterior mean, $\mu_{\theta}=\frac{x_{i}}{n_{i}}$, and variance, $\sigma_{\theta}^{2}=\frac{x_{i}}{n_{i}^{2}}$, are formally identical to the maximum likelihood estimator and variance

The corresponding posterior,

$$
\begin{equation*}
p\left(\theta \mid n_{i}, x_{i}\right) \propto e^{-\theta\left(n_{p}+n_{i}\right)} \theta^{x_{p}+x_{i}-1} \tag{A.8}
\end{equation*}
$$

of the maximum likelihood estimator of θ in the classical Poisson model, but are subject to a different interpretation under the Bayesian paradigm.

To specify an informative prior, we could assign $\alpha=x_{p}$ and $\beta=n_{p}$, where x_{p} and n_{p} are the respective numbers of observed takes and sets in all previous years p :

$$
\begin{equation*}
p(\theta) \propto e^{-\theta n_{p}} \theta^{x_{p}-1} \tag{A.7}
\end{equation*}
$$

has a mean $\mu_{\theta}=\frac{x_{p}+x_{i}}{n_{p}+n_{i}}$ and variance $\sigma_{\theta}^{2}=\frac{x_{p}+x_{i}}{\left(n_{p}+n_{i}\right)^{2}}$.
The posterior predictive distribution (PPD) for the number of unobserved takes, $y_{i}-x_{i}$, is derived from the Poisson likelihood function and the posterior for θ :

$$
\begin{equation*}
p\left(y_{i}-x_{i} \mid N_{i}, n_{i}, x_{i}\right)=\int_{\theta} p\left(y_{i}-x_{i} \mid \theta, N_{i}-n_{i}\right) p\left(\theta \mid n_{i}, x_{i}\right) d \theta \tag{A.9}
\end{equation*}
$$

where y_{i} and N_{i} are the total (observed + unobserved) numbers of takes and sets in year i, respectively. This is a negative binomial distribution, $\operatorname{Negbin}\left(\alpha+y_{i}-x_{i}, \frac{\beta+n_{i}}{N_{i}-n_{i}}\right)$, where α and β are again the numbers of observed takes and sets from all previous years (Gelman et al. 2004). This PPD reflects posterior uncertainty in θ and in unobserved experience. Adding x_{i} produces a PPD for y_{i}. Whereas a posterior distribution supports inference about a parameter in the likelihood function (in our case, θ, a bycatch rate), a posterior predictive distribution supports predictive statements about the output of the likelihood function (in our case, $y_{i}-x_{i}$, the unobserved bycatch count). A PPD may be specified for
any amount of fishing effort based on past numbers of observed sets and takes, regardless of whether the effort occurred in the past or has yet to occur in the future. This assumes that the same probability model holds under different years and conditions, which seems reasonable given that the distribution of these rare-event takes over 20 years appears to follow a Poisson distribution. The PPD can be used to produce range or point estimates of bycatch for the specified level of effort.

To model the number of observed deaths, w_{i}, we specify a binomial likelihood function which quantifies the stochastic dependence of w_{i} on x_{i} and a conditional mortality parameter, q (i.e., given a take of this species occurs, the probability that the animal dies):

$$
\begin{equation*}
f\left(w_{i} \mid x_{i}, q_{s}\right)=\frac{x_{i}!}{w_{i}!\left(x_{i}-w_{i}\right)!} q^{w_{i}}(1-q)^{x_{i}-w_{i}} \tag{A.10}
\end{equation*}
$$

A noninformative, conjugate prior of $\operatorname{Beta}(1,1)$ for q results in a posterior distribution of the form $\operatorname{Beta}\left(1+w_{p}, 1+x_{p}-w_{p}\right)$ (Chapter 2 in Gelman et al. (2004)). Over 20 years, $w_{p}=14$ deaths and $x_{p}=24$ takes for leatherbacks, and $w_{p}=1$ death and $x_{p}=4$ takes for humpbacks (the fisher-reported mortality is conservatively treated as a take for purposes of estimating the conditional mortality rate for humpbacks). Throughout our analyses, we use the posteriors $\operatorname{Beta}(15,11)$ for leatherbacks and $\operatorname{Beta}(2,4)$ for humpbacks.

The PPD for the number of unobserved deaths, $z_{i}-w_{i}$, can be constructed using Binomial(PPD for $\left.y_{i}-x_{i}, q\right)$. Adding w_{i} to this distribution produces a PPD for z_{i}, the total number of deaths for that species in year i.

Literature Cited

Gardner, B., P. J. Sullivan, S. Epperly, and S. J. Morreale. 2008. Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic. Endangered Species Research 5:279-289.

Gelman, A., J. B. Carlin, H. S. Stern, and D. Rubin. 2004. Bayesian Data Analysis. Second edition. Chapman and Hall/CRC, Boca Raton, Florida, USA.

Murray, K. T. 2009. Characteristics and magnitude of sea turtle bycatch in US mid-Atlantic gillnet gear. Endangered Species Research 8:211-224.

Murray, K. T. 2011. Interactions between sea turtles and dredge gear in the US sea scallop (Placopecten magellanicus) fishery, 2001-2008. Fisheries Research 107:137-146.

NMFS. 2004. Evaluating bycatch: a national approach to standardized bycatch monitoring programs. NOAA Technical Memorandum NMFS-F/SPO-66. NOAA National Marine Fisheries Service, Silver Spring, Maryland, USA.

Pradhan, N. C., and P. Leung. 2006. A Poisson and negative binomial regression model of sea turtle interactions in Hawaii's longline fishery. Fisheries Research 78:309-322.

