C The generalized niche model

In the niche model (Williams and Martinez, 2000), one assigns to each of S species a niche value n_i drawn from a uniform distribution in the interval $[0, 1]$. Each predator j preys on the species in a range $r_j = n_j x$ of the niche axis, where x is drawn from a beta-distribution $p(x) = \beta (1 - x)^{(\beta - 1)}$ and $\beta = (S^2 / 2L) - 1$, where L is the total number of trophic interactions in the network. The center of the range r_j is selected uniformly at random in the interval $[r_j/2, n_j]$.

The generalized niche model (Stouffer et al., 2006) builds upon this formulation by allowing for tunable prey contiguity (Fig. C1). First, a reduced range r'_j for predator j is set to $r'_j = c r_j = c n_j x$, where c is a fixed parameter in the interval $[0, 1]$. Because species are distributed uniformly at random on the resource axis, a predator j with range r_j has on average $r_j S$ prey. The same applies to the reduced range r'_j, and therefore a predator has $\Delta k = \left(r_j - r'_j \right) S = (1 - c) r_j S$ anticipated prey unaccounted for after the range reduction. To account for this, Δk prey (rounded to the nearest integer value) are selected randomly from those species i with niche value $n_i \leq n_j$ that are not already a prey of species j. The parameter c is thus a measure of prey contiguity: for $c = 0$ all prey of j are selected randomly among species with $n_i \leq n_j$ and one recovers the generalized cascade model (Stouffer et al., 2005), whereas for $c = 1$ all prey are contiguous and one recovers the niche model.
Figure C1: Graphical illustration of the generalized niche model of Stouffer et al. (2006). The circles represent the species i and their location $n_i \in [0, 1]$ is assigned at random from a uniform distribution. We show examples of what predators’ diets would resemble for various values of diet contiguity c. In all panels, the white circle represents the example predator and the red circles represent the prey. A, The lower limit of diet contiguity, $c = 0$. This limit is equivalent to the generalized cascade model of Stouffer et al. (2005). B, Intermediate values of diet contiguity, $0 < c < 1$. C, The upper limit of diet contiguity, $c = 1$. This limit is equivalent to the niche model of Williams and Martinez (2000).
References

