Ecological Archives E096-286-A2

Qi Deng, Dafeng Hui, Yiqi Luo, James Elser, Ying-Ping Wang, Irakli Loladze, Quanfa Zhang, and Sam Dennis. 2015. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96:33543362. http://dx.doi.org/10.1890/15-0217.1

Appendix B. List of publications used in meta-analyses for soil phosphatase, labile P, and total P under elevated CO2.

Austin, E.E., Castro, H.F., Sides, K.E., Schadt, C.W., and Classen, A.T. 2009. Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol. Biochem., 41(3):514-520.

Barron-Gafford, G.A., Martens, D., McLain, J.E.T., Grieve, K.A., and Murthy, R. 2005. Growth of eastern cottonwoods (Populus deltoides) in elevated CO2 stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above and belowground biomass production. Global Change Biol., 11 (8):1220-1233.

Bhattacharyya, P., Roy, K.S., Dash, P.K., Neogi, S., Shahid, Md., Nayak, A.K., Raja, R., Karthikeyan, S., Balachandar, D., and Rao, K.S. 2014. Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). Eur. J. Agron., 53:28-37.

Blank, R.R., and Derner, J.D. 2004. Effects of CO2 enrichment on plant-soil relationships of Lepidium latifolium. Plant Soil, 262:159-167.

Brown, A.L.P., Day, F.P., Hungate, B.A., Drake, B.G., and Hinkle, C.R. 2007. Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant Soil, 292:219-232.

Chung, H., Zak, D.R., and Lilleskov, E.A. 2006. Fungal community composition and metabolism under elevated CO2 and O3. Oecologia, 147:143-154.

Das, S., Bhattacharyya, P., and Adhya, T.K. 2011. Interaction effects of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environ. Monit. Assess., 182:555-569.

Delucia, E.h., Callaway, R.M., Thomas, E.M., and Schlesinger, W.H. 1997. Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann. Bot., 79(2):111-120.

Dhillion, S., Roy, J., and Abrams, M. 1996. Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant Soil, 187:333-342.

Diao, X.J., He, L.S., Xi, B.D., and Wang, P.T. 2014. Can CO2 Fertilization Enhance Phytoremediation of Organic Soil Contamination? Soil Sediment Contam., 23(2):126-143.

Dijkstra, F., Pendall, E., Morgan, J., Blumenthal, D., Carrillo, Y., LeCain, D., Follett, R., and Williams, D. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol., 196:807-815.

Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., and Kuzyakov, Y. 2009. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biol., 15:1603-1614.

Drake, J.E., Oishi, A.C., Giasson, M.-A., Oren, R., Johnsen, K.H., andFinzi, A.C. 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO2] and N fertilization. Agr. Forest Meteorol., 165:43-52.

Drissner, D., Blum, H., Tscherko, D., and Kandeler, E. 2007. Nine years of enriched CO2 changes the funtion and structural diversity of soil microorganisms in a grassland. Eur. J. Soil Sci., 58:260-269.

Duval, B.D., Dijkstra, P., Drake, B.G., Johnson, D.W., Ketterer, M.E., Partrick Megonigal, J., and Hungate, B.A. 2013. Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2. PLoS ONE, 8(5): e64386. doi:10.1371/journal.pone.0064386

Ebersberger, D., Niklaus, P.A., and Kandeler, E. 2003. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol. Biochem., 35:965-972.

Edwards, E.J., McCaffery, S., and Evans, J.R. 2006. Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol., 169:157-167.

Fenner, N., Freeman, C., Lock, M.A., Harmens, H., Reynolds, B., and Sparks, T. 2007. Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environ. Sci. Technol., 41:3146-3152.

Finzi, A.C., Sinsabaugh, R.L., Long, T.M., and Osgood, M.P. 2006. Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. Ecosystems, 9:215-226.

Guenet, B., Lenhart, K., Leloup, J., Giusti-Miller, S., Pouteau, V., Mora, P., Nunan, N., and Abbadie, L. 2012. The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma, 170:331-336.

Gutknecht, J.L.M., Henry, H.A.L., and Balser, T.C. 2010. Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia, 53:283-293.

Haase, S., Philippot, L., Neumann, G., Marhan, S., and Kandeler, E. 2008. Local response of bacterial densities and enzyme activites to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L. Soil Biol. Biochem., 40:1225-1234.

Haugwitz, M.S. 2013. Soil fungal community responses to global changes. Ph.D. thesis.

Henry, H.A.L., Juarez, J.D., Field, C.B., and Vitousek, P.M. 2005. Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Global Change Biol., 11:1808-1815.

Jin, J., Tang, C.X., Armstrong, R., and Sale, P. 2012. Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient Vertisol. Plant Soil, 358:91-104.

Jin, J., Tang, C., Armstrong, R., Butterly, C., and Sale, P. 2013. Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil, 368:315–-328.

Jin, J., Tang, C., Hogarth, T.W., Armstrong, R., and Sale, P. 2014. Nitrogen form but not elevated CO2 alters plant phosphorus acquisition from sparingly soluble phosphorus sources. Plant Soil, 374:109-119.

Johnson, D.W., Walker, R.F., and Ball, J.T. 1995. Combined effects of nitrogen and elevated CO2 on forest soils. Water Air Soil Pollut., 85:1551-1556.

Johnson, D., Ball, J., and Walker, R. 1997. Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant Soil, 190(1):29-40.

Johnson, D.W., Hungate, B.A., Dijkstra, P., Hymus, G., Hinkle, C.R., Stiling, P., and Drake, B.G. 2003. The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forest. Ecol. Appl., 13(5):1388-1399.

Johnson, D.W., Cheng, W., Joslin, J.D., Norby, R.J., Edwards, N.T., and Todd, D.E. 2004. Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry, 69(3):379-403.

Kandeler, E., Mosier, A.R., Morgan, J.A., Milchunas, D.G., King, J.Y., Rudolph, S., and Tscherko, D. 2006. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol. Biochem., 38:2448-2460.

Kang, H., Freeman, C., andAshendon, T.W. 2001. Effects of elevated CO2 on fen peat biogeochemistry. Sci. Total Environ., 279:45-50.

Kang, H., Kim, S.-Y., Fenner, N., and Freeman, C. 2005. Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Sci. Total Environ., 337:207-212.

Kelley, A.M., Fay, P.F., Polley, H.W., Gill, R.A., and Jackson, R.B. 2011. Atmospheric CO2 and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. Ecosphere, 2(8), 96. doi:10.1890/ES11-00117.1

Kim, S.-Y., and Kang, H. 2008. Effects of elevated CO2 on below-ground processes in temperate marsh microcosms. Hydrobiologia, 605:123-130.

Kim, S.-Y., and Kang, H. 2011. Effects of Elevated CO2 and Pb on Phytoextraction and Enzyme Activity. Water Air Soil Pollut., 219:365-375.

Khan, F.N., Lukac, M., Turner, G ., Godbold, D.L. 2008. Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE). Soil Biol. Biochem., 40:1716-1723.

Khan, F.N., Lukac, M., Miglietta, F., Khalid, M., and Godbold, D.L. 2010. Tree exposure to elevated CO2 increases availability of soil phosphorus. Pak. J. Bot., 42(2):907-916.

Lagomarsino, A., Moscatelli, M.C., Hoosbeek, M.R., De Angelis, P., and Grego, S. 2008. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar rotation. Plant Soil, 308:131-147.

Larson, J.L., Zak, D.R., and Sinsabaugh, R.L. 2002. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Sci. Soc. Am. J., 66:1848-1856.

Ma , H.L, Zhu, J.G., Liu, G., Xie, Z.B., Wang, Y., Yang, L., and Zeng, Q. 2007. Availability of soil nitrogen and phosphorus in a typical rice–wheat rotation system under elevated atmospheric [CO2]. Field Crops Res., 100:44-51.

Manna, S., Singh, N., and Singh, V.P. 2013. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil. Environ. Monit. Assess., 185:2951–2960.

Manoj-Kumar, Swarup, A., Patra, A.K., Purkayastha, T.J., Manjaiah, K.M., and Rakshit, R. 2011. Elevated CO2 and temperature effects on phosphorus dynamics in rhizosphere of wheat (Triticum aestivum L.) grown in a Typic Haplustept of subtropical India. Agrochimica, LV (6):314- 331.

Matamala, R., and Schlesinger, W.H. 2000. Effects of elevated atmospheric CO2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biol., 6:967-979.

Menge, D.N.L., and Field, C.B. 2007. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biol., 13:2582-2591.

Moorhead, D.L., and Linkins, A.E. 1997. Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant Soil, 189:321-329.

Moscatelli, M.C., Fonck, M., De Angelis, P., Larbi, H., Macuz, A., Rambelli, A., and Grego, S. 2001. Mediterranean natural forest living at elevated carbon dioxide: soil biological properties and plant biomass growth. Soil Use Manag., 17:195-202.

Moscatelli, M.C., Lagomarsino, A., De Angelis, P., and Grego, S. 2005. Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Appl. Soil Ecol., 30:162-173.

Niklaus, P.A., Alphei, J., Kampichler, C., Kandeler, E., Köner, C., Tscherko, D., and Wohlfender, M. 2007. Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling. Ecology, 88:3153-3163.

Sinsabaugh, R.L., Saiya-Cork, K., Long, T., Osgood, M.P., Neher, D.A., Zak, D.R., and Norby, R.J. 2003. Soil microbial activity in Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl. Soil Ecol., 24:263-271.

Wasaki, J., Rothe, A., Kania, A., Neumann, G., Romheld, V., Shinano, T., Osaki, M., and Kandeler, E. 2005. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. J. Environ. Qual., 34(6):2157-2166.

Weber, C.F., Vilgalys, R., and Kuske, C.R. 2013. Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon. Front Microbiol., 4:78. doi: 10.3389/fmicb.2013.00078. eCollection 2013.

Yang, L.X., Wang, Y.L., Huang, J.Y., Zhu, J.G., Yang, H.J., Liu, G., Liu, H.J., Dong, G.H., and Hu, J. 2007a. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Res., 102:141-150.

Yuan, X.X., Lin, X.G., Chu, H.Y., Yin, R., Zhang, H.Y., Hu, J.L., and Zhu, J.G. 2006. Effects of elevated atmospheric CO2 on soil enzyme activities at different nitrogen application treatments. Acta Ecol.a Sini., 26(1):48-53.

Zheng, J.Q., Han, S.J., Zhou, Y.M., Ren, F.R., Xin, L.-H., and Zhang, Y. 2010. Microbial activity in a temperate forest soil as affected by elevated atmospheric CO2. Pedosphere, 20:427-435.

Zheng, J.Q., Wang, Y., and Han, S.J. 2013. Response of soil microbial biomass and enzyme activities under three temperate tree species to elevated CO2 in Changbai mountain, northeastern China. Dr. Maria, C., Hernandez Soriano (Ed.), ISBN: 978-953-51-1029-3, InTech, DOI: 10.5772/52837.


[Back to E096-286]