Ecological Archives E096-286-A1

Qi Deng, Dafeng Hui, Yiqi Luo, James Elser, Ying-Ping Wang, Irakli Loladze, Quanfa Zhang, and Sam Dennis. 2015. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96:33543362. http://dx.doi.org/10.1890/15-0217.1

Appendix A. List of publications used in meta-analyses for plant N and P concentration or pool, N:P ratio, and plant growth under elevated CO2.

Alberton, O., Kuyper ,T.W., and Gorissen, A. 2007. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil, 296:159-172.

Almeida, J.P.F., Liischer, A., Frehner, M., Oberson, A., and Nosberger, J. 1999.  Partitioning of P and the activity of root acid phosphatase in white cover (Trifolium repens L.) are modified by increased atmospheric CO2 and P fertilization. Plant Soil, 210:159-166.

Al-Rawahy, S.H., Sulaiman, H., Farooq, S.A., Karam, M.F., and Sherwani, N. 2013. Effect of O3 and CO2 levels on growth, biochemical and nutrient parameters of alfalfa (Medicago Sativa). APCBEE Procedia, 5:288-295.

Barnes, J., and Pfirrmann, T. 1992. The influence of CO2 and O3, singly and in combination, on gas exchange, growth and nutrient status of radish. New Phytol., 121(3):403–412.

Baslam, M., Garmendia, I., and Goicoechea, N. 2012. Elevated CO2 may impair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality of lettuce. Ann. Appl. Biol., 161(2):180–191.

Baxter, R., Ashenden, T.W., Sparks, T.H., Farrar, J.F. 1994a. Effects of elevated carbon dioxide on three montane grass species I: Growth and dry matter partitioning. J. Exp. Bot., 45:305-315.

Baxter, R., Gantley, M., Ashenden, T.W., Farrar, J.F. 1994b. Effects of elevated carbon dioxide on three montane grass species II. Nutrient uptake, allocation and efficiency of use. J. Exp. Bot., 45:1267-1278.

Baxter, R., Ashenden, T.W., and Farrar, J.F. 1997. Effect of elevated CO2 and nutrient status on growth, dry matter partitioning and nutrient content of Poa alpina var. vivipara L. J. Exp. Bot., 48(7):1477-1486.

Blank, R.R., and Derner, J.D. 2004. Effects of CO2 enrichment on plant-soil relationships of Lepidium latifolium. Plant Soil, 262:159-167.

Blank, R., Morgan, T., Ziska, L., and White, R. 2011. Effect of atmospheric CO2 levels on nutrients in cheatgrass tissue. Nat. Resour. Env. Iss., 16(18):1-5.

Brown, A.L.P., Day, F.P., Hungate, B.A., Drake, B.G., and Hinkle, C.R. 2007. Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO2. Plant Soil, 292:219-232.

Brown, K.R. (1991). Carbon dioxide enrichment accelerates the decline in nutrient status and relative growth rate of Populus tremuloides Michx. seedlings. Tree Physiol., 8:161-173.

Cao, W., and Tibbitts, T.W. 1997. Starch concentration and impact on specific leaf weight and element concentrations in potato leaves under varied carbon dioxide and temperature. J. Plant Nutr., 20(7-8):871–81.

Carlisle, E., Myers, S., Raboy, V., and Bloom, A. 2012. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front, Plant Sci., 3:195.

Chagvardieff, P., D’Aletto, T., and Andre, M. 1994. Specific effects of irradiance and CO2 concentration doublings on productivity and mineral content in lettuce. Adv. Space Res., 14(11):269–275.

Dijkstra, F., Pendall, E., Morgan, J., Blumenthal, D., Carrillo, Y., LeCain, D., Follett, R., Williams, D. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol., 196:807-815.

Edwards, E.J., McCaffery, S., and Evans, J.R. 2006. Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol., 169:157-167.

Fangmeier, A., Grüters, U., Högy, P., Vermehren, B., and Jäger, H.-J. 1997. Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat—II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ. Pollut., 96(1):43–59.

Fangmeier, A., De Temmerman, L., Black, C., Persson, K., and Vorne, V. 2002. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. Eur. J. Agron., 17(4):353-368.

Finzi, A.C., Allen, A.S., DeLucia, E.H., Ellsworth, D.S., and Schlesinger, W.H. 2001. Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology, 82(2):470-484.

Finzi, A.C., Delucia, E.H., Schlesinger, W.H. 2004. Canopy N and P dynamics of a southeastern US pine forest under elevated CO2. Biogeochemistry, 69:363-378.

Fleisher, D.H., Wang, Q., Timlin, D.J., Chun, J.-A., and Reddy, V.R. 2013. Effects of carbon dioxide and phosphorus supply on potato dry matter allocation and canopy morphology. J. Plant Nutr., 36:566-586.

Gavito, M.E., Curtis, P.S., Mikkelsen, T.N., and Jakobsen, I. 2001. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. J. Exp. Bot., 52:1913-1923.

Gentile, R., Dodd, M., Lieffering, M., Brock, S.C., Theobald, P.W., and Newton, P.C.D. 2012. Effects of long-term exposure to enriched CO2 on the nutrient-supplying capacity of a grassland soil. Biol. Fert. Soils, 48:357–362.

Gries, C., Kimball, B.A., and Idso. S.B. 1993. Nutrient uptake during the course of a year by sour orange trees growing in ambient and elevated atmospheric carbon dioxide concentrations. J. Plant Nutr., 16:129-147.

Hattas, D., Stock, W.D., Mabusela, W.T., Green, I.R. 2005. Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO2 concentrations. Global Planet. Change, 47:181-192.

Heagle, A.S., Miller, J.E., Sherrill, D.E., and Rawlings, J.O. 1993. Effects of ozone and carbon dioxide mixtures on two clones of white clover. New Phytol., 123:751-762.

Heagle, A.S., Miller, J.E., and Pursley, W.A. 2003. Growth and Yield Responses of Potato to Mixtures of Carbon Dioxide and Ozone. J. Environ. Qual., 32:1603-1610.

Heijmans, M.M.P.D., Klees, H., and Berendse, F. 2002. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos, 97:415-425.

Housman, D.C., Killingbeck, K.T., Dave Evans, R., Charlet, T.N., and Smith, S.D. 2012. Foliar nutrient resorption in two Mojave Desert shrubs exposed to Free-Air CO2 Enrichment (FACE). J. Arid Environ., 78:26-32.

Huluka, G., Hileman, D., Biswas, P., Lewin, K., Nagy, J., and Hendrey, G. 1994. Effects of elevated CO2 and water stress on mineral concentration of cotton. Agr. Forest Meteorol., 70(1-4):141–152.

Huang, W.J., Zhou, G.Y., Liu, J.X., Zhang, D.Q., Xu, Z.H., Liu, S.Z. 2012. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems. Environ. Pollut., 168:113-120.

Jifon, J.L., Graham, J.H., Drouillard, D.L., and Syvertsen, J.P. 2002. Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New phytol., 153:133-42.

Jin, J., Tang, C.X., Armstrong, R., Sale, P. 2012. Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient Vertisol. Plant Soil, 358:91-104.

Johnson, D.W., Walker, R.F., and Ball, J.T. 1995a Combined effects of nitrogen and elevated CO2 on forest soils. Water Air Soil Pollut., 85:1551-1556.

Johnson, D.W., Ball, J.T., and Walker, R.F. 1995b. Effects of CO2 and nitrogen on nutrient uptake in ponderosa pine seedlings. Plant Soil, 168:144-153.

Johnson, D., Ball, J., and Walker, R. 1997. Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant Soil, 190(1):29–40.

Johnson, D.W., Hungate, B.A., Dijkstra, P., Hymus, G., Hinkle, C.R., Stiling, P., and Drake, B.G. 2003. The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forest. Ecol. Appl., 13(5):1388-1399.

Johnson, D.W., Cheng, W., Joslin, J.D., Norby, R.J., Edwards, N.T., and Todd, D.E. 2004. Effects of elevated CO2 on nutrient cycling in a sweetgum plantation. Biogeochemistry, 69(3):379-403.

Jongen, M., Fay, P., and Jones, M.B. 1996. Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytol., 132:413-423.

Kanowski, J. 2001. Effects of elevated CO2 on the foliar chemistry of seedlings of two rainforest trees from north-east Australia: Implications for folivorous marsupials. Aust. Ecol., 26:165–172.

Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavuori, E., and Holopainen, T. 2006. Chemical composition and decomposition of silver birch leaf litter produced under elevated CO2 and O3. Plant Soil, 282:261-280.

Keutgen, N., and Chen, K. 2001. Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macronutrient and carbohydrate contents to elevated CO2. J. Plant Physiol., 158(10):1307–1316.

Keutgen, N., Chen, K., and Lenz, F. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol., 150:395-400.

Le Thiec, D., Dixon, M., Loosveldt, P., and Garrec, J.P. 1995. Seasonal and annual variations of phosphorus, calcium, potassium and manganese contents in different cross sections of Picea abies (L.) Karst. needles and Quercus rubra L. leaves exposed to elevated CO2. Trees, 10:55-62.

Li, J., Zhou, J.-M., Duan, Z.-Q., Du, C.-W., and Wang, H.-Y. 2007. Effect of CO2 enrichment on the growth and nutrient uptake of tomato seedlings. Pedosphere, 17(3):343-351.

Li, J.L., Dang, Q.L., Man R.Z., and Marfo. J. 2013. Elevated CO2 alters N- growth relationship in spruce and causes unequal increases in N, P and K demands. Forest Ecol. Manag., 298:19-26.

Lieffering, M., Kim, H.-Y., Kobayashi, K., and Okada, M. 2004. The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crops Res., 88(2-3):279–286.

Liu, J.X., Zhang, D.Q., Zhou, G.Y., Duan, H.L. 2012. Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated [CO2], N fertilization and canopy positions. J. Plant Ecol., 5(4):376-390.

Liu, J.X., Huang, W.J., Zhou, G.Y., Zhang, D.Q. 2013. Nitrogen to phosphorus ratios of tree species inresponse to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biol., 19(1):208-216.

Luomala, E., Laitinen, K., Sutinen, S., Kellomaki, S., Vapaavuori, E., and Kellomäki, S. 2005. Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant Cell Environ., 28(6):733-749.

Manderscheid, R., Bender, J., Jäger, H.-J., and Weigel, H. J. 1995. Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agr. Ecosyst. Environ., 54(3):175-185.

McKeehen, J.D., Smart, D.J., Mackowiak, C.L., Wheeler, R.M., and Nielsen, S.S. 1996. Effect of CO2 levels on nutrient content of lettuce and radish. Adv Space Res., 18(4-5):85-92.

Menge, D.N.L., and Field, C.B. 2007. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biol., 13(12):2582-2591.

Mjwara, J.M., Botha, C.E.J., and Radloff, S.E. 1996. Photosynthesis, growth and nutrient changes in non-nodulated Phaseolus vulgaris grown under atmospheric and elevated carbon dioxide conditions. Physiol. Plantarum, 97:754–763.

Morgan, J.A., Knight, W.G., Dudley, L.M., and Hunt, H.W. 1994. Enhanced root system C-sink activity, water relations and aspects of nutrient acquisition in mycotrophic Bouteloua gracilis subjected to CO2 enrichment. Plant Soil, 165:139–146.

Morgan, J.A., Lecain, D.R., Pendall, E., Blumenthal, D.M., Kimball, B.A., Carrillo, Y., Williams, D.G., Heisler-White, J., Dijkstra, F.A., and West, M. 2011. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476:202-205.

Murray, M.B., Smith, R.I., Friend, A., and Jarvis, P.G. 2000. Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Tree Physiol., 20:421-434.

Newbery, R., Wolfenden, J., Mansfield, T., and Harrison, A. 1995. Nitrogen, phosphorus and potassium uptake and demand in Agrostis capillaris: the influence of elevated CO2 and nutrient supply. New Phytol., 130(4):565-74.

Niklaus, P.A., and Körner, C. 2004. Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol. Monogr., 74:491-511.

Niklaus, P.A., Leadley, P.W., Stocklin, J. and Korner, C. 1998. Nutrient relations in calcareous grassland under elevated CO2. Oecologia, 116:67-75.

Norisada, M., Motoshige, T., Kojima, K. and Tange, T. 2006. Effects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlings. J. Plant Nutr. Soil Sci., 169:274-279.

Novotny, A.M., Schade, J.D., Hobbie, S.E., Kay, A.D., Kyle, M., Reich, P.B., Elser, J.J. 2007. Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia, 151:687-696.

Nowak, J., Sroka, S., and Matysiak, B. 2002. Effects of light level, CO2 enrichment, and concentration of nutrient solution on growth, leaf nutrient content, and chlorophyll fluorescence of boston fern microcuttings. J. Plant Nutr., 25:2161-2171.

Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., and Vapaavuori, E. 2005. Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biol., 11(5):732-748.

Olsrud, M., Carlsson, B.A., Svensson, B.M., Michelsen, A., Melillo, J.M. 2010. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Global Change Biol., 16:1820-1829.

O’Neill, E.G., Luxmoore, R.J., and Norby, R.J. 1987. Elevated atmospheric CO2 effects on seedling growth, nutrient uptake, and rhizosphere bacterial populations of Liriodendron tulipifera L. I. Plant Soil, 104:3-11.

Overdieck, D. 1993. Elevated CO2 and the mineral content of herbaceous and woody plants. Vegetatio, 104:403-411.

Owensby, C.E., Coyne, P.I., and Auen, L.M. 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant Cell Environ., 16:843-850.

Pal, M., Karthikeyapandian, V., Jain, V., Srivastava, A.C., Raj, A., and Sengupta, U.K. 2004. Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agr. Ecosyst. Environ., 101(1):31-38.

Pang, J., Zhu, J., Xie, Z., Chen, G.-P., Liu, G., and Zhang, Y. 2005. Effects of elevated pCO2 on nutrient uptake by rice and nutrient contents in rice grain. Chinese J. Rice Sci., 19(4):350-354.

Peñuelas, J., Idso, S.B., Ribas, A., and Kimball, B.A. 1997. Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves. New Phytol., 135(3):439-444.

Peñuelas, J., Filella, I., and Tognetti, R. 2001. Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Glob Change Biol., 7:291-301.

Pfirrmann, T., Barnes, J. D., Steiner, K., Schramel, P., Busch, U., Kuchenhoff, H., and Payer, H.-D. 1996. Effects of elevated CO2, O3 and K deficiency on Norway spruce (Picea abies): nutrient supply, content and leaching. New Phytol., 134(2):267-278.

Pierce, S., Stirling, C.M., and Baxter, R. 2003. Pseudoviviparous reproduction of Poa alpina var. vivipara L. (Poaceae) during long-term exposure to elevated atmospheric CO2. Ann. Bot., 91:613-622.

Piikki, K., Vorne, V., Ojanperä, K., and Pleijel, H. 2007. Impact of elevated O3 and CO2 exposure on potato (Solanum tuberosum L. cv. Bintje) tuber macronutrients (N, P, K, Mg, Ca). Agr. Ecosyst. Environ., 118(1-4):55-64.

Porter, M.A., and Grodzinski, B. 1984. Acclimation to high CO2 in bean: Carbonic anhydrase and ribulose bisphosphate carboxylase. Plant Physiol., 74(2):413-416.

Prior, S.A., Torbert, H.A., Runion, G.B., Mullins, G.L., Rogers, H.H., and Mauney, J.R. 1998. Effects of carbon dioxide enrichment on cotton nutrient dynamics. J. Plant Nutr., 21:1407-1426

Prior, S.A., Runion, G.B., Rogers, H.H., and Torbert, H.A. 2008. Effects of atmospheric CO2 enrichment on crop nutrient dynamics under no-till conditions. J. Plant Nutr., 31(4):758-773.

Riikonen, J., Lindsberg, M-M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., and Vapaavuori, E. 2004. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiol., 24:1227-1237.

Roberntz, P., and Linder, S. 1999. Effects of long term CO2 enrichment and nutrient availability in Norway spruce. II Foliar chemistry, Trees, 14:17-27.

Roberntz, P., and Stockfors, J. 1998. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. Tree Physiol., 18:233-241.

Rodenkirchen, H., Göttlein, A., Kozovits, A.R., Matyssek, R., and Grams, T.E.E. 2009. Nutrient contents and efficiencies of beech and spruce saplings as influenced by competition and O3/CO2 regime. Eur. J. For. Res., 128:117-128.

Rogers, G.S., Payne, L., Milham, P., and Conroy, J. 1993. Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. In Plant Nutrition – From Ge­netic Engineering to Field Practice. Ed. N.J. Barrow. 257-260.

Rouhier, H., and Read, D.J. 1998. Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pinus syl6estris. Environ. Exp. Bot., 42(3):237-246.

Sa, T., and Israel, D.W. 1998. Phosphorus-deficiency effects on response of symbiotic N2 fixation and carbohydrate status in soybean to atmospheric CO2 enrichment. J. Plant Nutr., 21(10):2207-2218.

Schenk, U., Jager, H.-J., and Weigel, H.-J. 1997. The response of perennial ryegrass/white clover miniswards to elevated atmospheric CO2 concentrations: effects on yield and fodder quality. Grass and Forage Sci., 52(3):232-241.

Seneweera, S.P., and Conroy, J.P. 1997. Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition. Soil Sci. Plant Nutr., 43:1131-1136.

Seneweera, S. 2011. Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. J. Plant Interact., 6(1):35-42.

Shinano, T., Yamamoto, T., Tawaraya, K., Tadokoro, M., Koike, T., and Osaki, M. 2007. Effects of elevated atmospheric CO2 concentration on the nutrient uptake characteristics of Japanese larch (Larix kaempferi). Tree Physiol., 27(1):97-104.

Singh, S., Bhatia, A., Tomer, R., Kumar, V., Singh, B., and Singh, S. D. 2013. Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Environ. Monit. Assess., 185(8):6517-6529.

Syvertsen, J.P., andJ.H. Graham. 1999. Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]. Plant Soil, 208(2):209-219.

Temperton, V.M., Grayston, S.J., Jackson, G., Barton, C.V.M., Millard, P., Jarvis, P.G. 2003. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiol., 23:1051-1059.

Teng, N., Wang, J., Chen, T., Wu, X., Wang, Y., and Lin, J. 2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol., 172(1):92-103.

Tissue, D.T. and J.D. Lewis. 2010. Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric [CO2] vary with phosphorus supply. Tree Physiol., 30:1361-1372. 

Tremblay, N., Yelle, S., and Gosselin, A. 1988. Effects of CO2 enrichment, nitrogen and phosphorus fertilization during the nursery period on mineral composition of celery. J. Plant Nutr., 11:37-49.

Utriainen, J., Janhunen, S., Helmisaari, H.-S., and Holopainen, T. 2000. Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to elevated CO2 and O3 concentrations. Trees, 14(8):475-484.

Van Vuuren, M.M.I., Robinson, D., Fitter, A.H., Chasalow, S.D., Williamson, L., and Raven, J.A. 1997. Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length and N, P and K uptake by wheat. New Phytol., 135:455-465.

Walker, R. F., Johnson, D. W., Geisinger, D. R., and Ball, J. T. 2000. Growth, nutrition, and water relations of ponderosa pine in a field soil as influenced by long-term exposure to elevated atmospheric CO2. Forest Ecology and Management, 137(1-3):1–11.

Watling, J.R. and Press. M.C. 1998. How does the C4 grass Eragrostis pilosa respond to elevated carbon dioxide and infection with the parasitic angiosperm Striga hermonthica? New Phytol., 140(4):667-675.

Weigt, R.B., Raidl, S., Verma, R., Rodenkirchen, H., Göttlein, A., and Agerer, R. 2011. Effects of twice ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza, 21(5):375-91.

Wilsey, B.J., McNaughton, S.J., and Coleman, J.S. 1994. Will increases in atmospheric CO2 affect regrowth following grazing in C4 grasses from tropical grasslands? A test with Sporobolus kentrophyllus. Oecologia, 99(1-2):141-144.

Winkler, J.B. and Herbst, M. 2004. Do plants of a semi-natural grassland community benefit from long-term CO2 enrichment? Basic Appl Ecol., 5(2):131-143.

Woodin, S., Graham, B., Killick, A., Skiba, U., and Cresser, M. 1992. Nutrient limitation of the long-term response of heather [(Calluna vulgaris) L. Hull] to CO2 enrichment. New Phytol., 122:635-642.

Wu, D.-X., Wang, G.-X., Bai, Y.-F., and Liao, J.-X. 2004. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agr. Ecosyst. Environ., 104(3):493-507.

Xie ZB, Zhu JG, Zhang YL, Ma HL, Liu G, Han Y, Zeng Q, and Cai ZC. 2002. Responses of rice (Oryza sativa) growth and its C, N and P composition to FACE (Free-air Carbon Dioxide Enrichment) and N, P fertilization. Chinese J. Appl. Ecol., 13(10):1223-1230.

Yamakawa, Y., Saigusa, M., Okada, M., and Kobayashi, K. 2004. Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant Soil, 259:367-372.

Yan, X., Yu, D., and Li, Y.-K. 2006. The effects of elevated CO2 on clonal growth and nutrient content of submerge plant Vallisneria spinulosa. Chemosphere, 62(4):595-601.

Yang, L.X., Wang, Y.L., Huang, J.Y., Zhu, J.G., Yang, H.J., Liu, G., Liu, H.J., Dong, G.H., and Hu, J. 2007a. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Res., 102:141–150.

Yang, L.X., Huang, J.Y., Yang, H.J., Dong, G.H., Liu, H.J., Liu, G., Zhu, J.G., and Wang, Y.L. 2007b. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Res., 100:189-199.

Zhang, S.R., and Dang, Q.L. 2006. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree Physiol., 26:1457-1467.

Zhang, S.R., Dang, Q.L., and Yu, X.G. 2006. Nutrient and [CO2] elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. Forest Ecol. Manag., 234:238-244.


[Back to E096-286]