Ecological Archives E096-275-A1

Carly D. Kenkel, Albert T. Almanza, and Mikhail V. Matz. 2015. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96:31973212. http://dx.doi.org/10.1890/14-2297.1

Appendix A. Additional tables and figures.

Table A1. Initial sample sizes at the beginning of the transplant experiment and how many of those samples were recovered at the six-month and one-year time point by site. No mortality was observed, rather, environmental disturbances such as Hurricane Issac resulted in the loss of samples.

Region

Transplant Site*

Origin

Initial N‡

N collected at Six Months§

N collected at One Year

Total N Lost

Lower Keys

Inshore

Inshore

30

15

15

0

Lower Keys

Inshore

Offshore

30

15

15

0

Lower Keys

Offshore

Inshore

30

15

12

3

Lower Keys

Offshore

Offshore

30

15

12

3

Lower Keys

In-novel

Inshore

30

15

13

2

Lower Keys

Off-novel

Offshore

30

15

14

1

Middle Keys

Inshore

Inshore

30

13

13

4

Middle Keys

Inshore

Offshore

30

15

10

5

Middle Keys

Offshore

Inshore

30

5

6

19

Middle Keys

Offshore

Offshore

30

10

5

15

Middle Keys

In-novel

Inshore

30

13

5

12

Middle Keys

Off-novel

Offshore

30

13

12

5

* See Materials & Methods: Experimental Design for site names and coordinates.

Two fragments per genotype per transplant site, N = 15 unique genotypes from each source population.

§ One fragment per genotype was targeted for collection at each sampling time (six months and one year).

 

Table A2. Wald test statistics for individual factors and interaction terms for the best-fit model for percent weight gain.

Factor

numDF

denDF

F value

P value

(Intercept)

1

211

792.4

0.000

Origin

1

56

10.4

0.002

Destination

2

211

40.7

0.000

Region

1

56

11.3

0.001

Time

1

211

182.0

0.000

Origin × Destination

2

211

15.7

0.000

Origin × Region

1

56

11.8

0.001

Destination × Region

2

211

2.9

0.057

Origin × Time

1

211

1.8

0.183

Destination × Time

2

211

3.5

0.031

Region × Time

1

211

0.3

0.596

Origin × Destination × Region

2

211

6.4

0.0019

Origin × Destination × Time

2

211

3.9

0.022

Origin × Region × Time

1

211

3.4

0.067

Destination × Region × Time

2

211

1.0

0.383

Origin × Destination × Region × Time

2

211

17.5

0.000

 

Table A3. Wald test statistics for individual factors and interaction terms for the best-fit model for total protein (mg/cm²).

Factor

numDF

denDF

F value

P value

(Intercept)

1

219

950.2

0.000

Origin

1

56

0.7

0.421

Destination

2

219

2.9

0.055

Region

1

56

0.1

0.700

Time

1

219

84.9

0.000

Origin × Destination

2

219

0.9

0.396

Origin × Region

1

56

1.6

0.208

Destination × Region

2

219

1.0

0.369

Origin × Time

1

219

6.8

0.009

Region × Time

1

219

69.6

0.000

Origin × Destination × Region

2

219

2.5

0.083

 

Table A4. Wald test statistics for individual factors and interaction terms for total carbohydrate (mg/cm²).

Factor

numDF

denDF

F value

P value

(Intercept)

1

221

813.4

0.000

Origin

1

56

0.3

0.589

Destination

2

221

2.7

0.066

Region

1

56

1.3

0.260

Time

1

221

0.003

0.956

Origin × Region

1

56

3.2

0.078

Destination × Region

2

221

1.9

0.157

Origin × Time

1

221

5.0

0.026

Destination × Time

2

221

1.6

0.201

Region × Time

1

221

7.2

0.008

 

Table A5. Wald test statistics for individual factors and interaction terms for total lipid (mg/cm²). It is important to note lipids were only measured for the lower keys “cross-channel” samples at the one year time point.

Factor

numDF

denDF

F value

P value

(Intercept)

1

28

934.9

0.000

Origin

1

28

0.09

0.767

Destination

1

20

7.8

0.011

Origin × Destination

1

20

2.0

0.168

 

Table A6. Wald test statistics for individual factors and interaction terms for symbiont density (cells/cm²).

Factor

numDF

denDF

F value

P value

(Intercept)

1

212

2658.2

0.000

Origin

1

56

0.8

0.372

Destination

2

212

0.7

0.521

Region

1

56

2.3

0.137

Time

1

212

0.6

0.440

Origin × Destination

2

212

7.4

0.001

Origin × Region

1

56

2.5

0.118

Destination × Region

2

212

4.8

0.009

Origin × Time

1

212

12

0.001

Destination × Time

2

212

1.2

0.309

Region × Time

1

212

28.5

0.000

Origin × Destination × Region

2

212

5.9

0.003

Origin × Destination × Time

2

212

8.2

0.000

Origin × Region × Time

1

212

2.3

0.129

Destination × Region × Time

2

212

1.6

0.202

 

Table A7. Wald test statistics for individual factors and interaction terms for the best-fit model for Chlorophyll a (ng/cm²).

Factor

numDF

denDF

F value

P value

(Intercept)

1

187

561.4

0.000

Origin

1

56

0.3

0.567

Destination

2

187

0.07

0.929

Region

1

56

5.3

0.025

Time

1

187

40.6

0.000

Origin × Destination

2

187

0.2

0.784

Origin × Region

1

56

0.5

0.492

Destination × Region

2

187

0.3

0.754

Origin × Time

1

187

2.1

0.153

Destination × Time

2

187

0.8

0.454

Region × Time

1

187

4.3

0.039

Origin × Destination × Region

2

187

0.2

0.792

Origin × Destination × Time

2

187

1.0

0.360

Origin × Region × Time

1

187

1.4

0.237

Destination × Region × Time

2

187

2.7

0.073

Origin × Destination × Region × Time

2

211

2.1

0.125

 

Table A8. Wald test statistics for individual factors and interaction terms for the best-fit model for Chlorophyll c2 (ng/cm²).

Factor

numDF

denDF

F value

P value

(Intercept)

1

190

641.5

0.000

Origin

1

56

1.4

0.248

Destination

2

190

0.6

0.573

Region

1

56

2.6

0.114

Time

1

190

122

0.000

Origin × Destination

2

190

2.0

0.133

Origin × Region

1

56

0.7

0.403

Destination × Region

2

190

1.3

0.267

Origin × Time

1

190

1.9

0.166

Destination × Time

2

190

0.6

0.568

Region × Time

1

190

18.9

0.000

Origin × Destination × Region

2

190

2.8

0.063

Origin × Destination × Time

2

190

2.0

0.137

Destination × Region × Time

2

190

1.7

0.179

 

Table A9. AICc model selection results for relationships among energetic parameters and percent weight gain.

Factor

K

AICc

ΔAICc

AICc Wt

Cum. Wt

LL

Protein + Symbiont Density

5

-681.98

0.00

0.68

0.68

346.09

Protein

4

-680.43

1.54

0.32

1.00

344.29

Symbiont Density

4

-644.14

37.83

0.00

1.00

326.14

null

3

-641.82

40.15

0.00

1.00

323.95

Carbohydrate

4

-638.42

43.55

0.00

1.00

323.28

Chlorophyll c2

4

-618.81

63.17

0.00

1.00

313.48

Chlorophyll A

4

-588.09

93.88

0.00

1.00

298.12

Lipid

4

-190.53

491.45

0.00

1.00

99.69

Protein + Lipid + Symbiont Density

6

-189.71

492.27

0.00

1.00

101.79

 

FigA1

Fig. A1. Inshore and offshore reefs in the Florida Keys exhibit differences in water quality and temperature. Mean ± SE for measures of (A) Benthic dissolved inorganic nitrogen (DIN), (B) total organic carbon (TOC), (C) total phosphorous (TP) and (D) turbidity (in NTU) from 1995–2011, provided by the SERC-FIU Water Quality Monitoring Network which is supported by EPA Agreement #X994621-94-0 and NOAA Agreement #NA09NOS4260253.


 

FigA2

Fig. A2. Coral fragment skeletons at the completion of the experiment showing coral growth over the initial cut margins. Red line indicates original cut margin.


 

FigA3

Fig. A3. Percent weight gain is independent of initial fragment size.


 

FigA4

Fig. A4. Mean phenotypic trait values ± SE of corals at each site and time point. Significance of post-hoc pair-wise comparisons are derived from MCMCglmm models. O: effect of population origin; T: effect of transplant destination, OxT: effect of the origin by transplant interaction.


 

FigA5

Fig. A5. Linear models incorporating (A) total protein (n = 290) and (B) symbiont density (n = 290) were the only ones to show AICc values that indicated an improvement over the null model. Both trait measurements show significant positive correlations with percent weight gain. Additional correlations between phenotypic trait data and percent growth indicate weak positive relationships overall.


 

FigA6

Fig. A6. Mean temperature or threshold temperatures do not explain a significant proportion of the variation in weight gain among coral fragments transplanted to different reef sites.


[Back to E096-275]