Appendix B – Stochastic partial differential equation approximation to Gaussian random fields

As a maximum likelihood implementation of the spatial Gompertz model, we use a stochastic partial differential equation (SPDE) approximation to a Gaussian random field (Lindgren et al. 2011), as previously implemented and tested in the integrated nested Laplace approximation (INLA) software (Rue et al. 2009). This approach approximates a Gaussian random field using a Gaussian Markov random field whose pairwise correlations follow the Matérn class. This approximation yields the following equivalence:

\[Q = \tau^2(\kappa^4C + 2\kappa^2G_1 + G_2) \]

(B.1)

where \(Q \) is the precision matrix of Gaussian Markov random field approximation, \(\kappa \) and \(\tau \) are parameters in the Matérn approximation (when specifying Matérn smoothness parameter \(v=1 \)), and \(C, G_1, \) and \(G_2 \) are sparse matrices representing a piecewise linear basis function for the approximation (see Lindgren et al. 2010, Lindgren and Rue 2013 for details). \(C, G_1, \) and \(G_2 \) are calculated using the R-INLA software (Lindgren and Rue 2013) in two steps. First, nodes for a finite element analysis “mesh” are calculated using R-INLA, where this mesh defines a piecewise linear (i.e., triangular in 2-dimensional space) approximation to \(C, G_1, \) and \(G_2 \) between nodes. This mesh has \(K \) nodes, where nodes are included at each of \(I \) stations as well as additional locations, and the number of additional locations can be predefined to control the tradeoff between precision and computational complexity of the SPDE approximation. R-INLA then calculates values for \(C, G_1, \) and \(G_2 \) at each node. These three sparse matrices are then extracted from R-INLA, and used in Template Model Builder (TMB, Kristensen et al. 2013) in subsequent steps of the maximum likelihood estimation.
Maximum likelihood estimation proceeds by defining $\Omega^{(k)}$ and $\Psi^{(k)}$, i.e., random fields defined at each node in the SPDE approximation. These follow a multivariate normal distribution.

$$\Omega \sim MVN(\alpha I, \Sigma_\Omega)$$
$$\Psi \sim MVN(0, \Sigma_E \otimes \Sigma_\nu)$$

(B.2)

where:

$$\Sigma_\Omega = \left(\tau_\Omega^2 (\kappa_\Omega^4 C + 2\kappa_\Omega^2 G_1 + G_2) \right)^{-1}$$

$$\Sigma_E = \left(\tau_E^2 (\kappa_E^4 C + 2\kappa_E^2 G_1 + G_2) \right)^{-1}$$

(B.3)

and Σ_ν is as defined in Eq. 2c (in the present application, we assume that $\kappa_\Omega = \kappa_E$, although future applications could explore the consequences of relaxing this assumption). $\Omega^{(k)}$ and $\Psi^{(k)}$ at knots that correspond to stations with data are then used to calculate the conditional probability of available data.

The computational cost of this SPDE approximation is $O(n^{3/2})$, while the cost of inverting the original Gaussian random field is $O(n^3)$, so this approximation is expected to gain in importance as the number of stations for available data increases. Following an empirical hierarchical modelling strategy (sensu Cressie and Wikle 2011), $\Omega^{(k)}$ and $\Psi^{(k)}$ are integrated across while calculating the marginal likelihood of κ, τ_Ω, τ_E, α, and any other hyperparameters of interest. We then use the delta-method to back-calculate the value of interpretable parameters, i.e., the distance at which the correlation has fallen to approximately 13% of its maximum (the spatial “range” λ):

$$\lambda = \frac{\sqrt{8\nu}}{\kappa}$$

(B.4)

and the marginal variance σ^2 of the random field:
\[
\sigma^2 = \frac{\Gamma(\nu)}{\Gamma(\nu + 0.5d)(4\pi)^{d/2} \kappa^{2\nu} \tau^2}
\]

(B.5)

where \(\Gamma\) is the gamma function, \(d\) is the dimension (i.e., 2 in the 2-dimensional spatial model), \(\nu=1\) as assumed in the Matérn approximation, and \(\kappa\) and \(\tau\) are the estimated parameters.
LITERATURE CITED

