Ecological Archives A025-040-A1

Josephine C. Iacarella, Jaimie T. A. Dick, Mhairi E. Alexander, and Anthony Ricciardi. 2015. Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching. Ecological Applications 25:706716. http://dx.doi.org/10.1890/14-0545.1

Appendix A. Details of the studies and data included in the meta-analysis.

Table A1. Impact and thermal optima data for 16 invasive alien species (IAS) that directly impact native populations through predation or herbivory in inland water systems. In cases where all native species were consumed, a detection limit specific to the study was added to the numerator of the log response ratios (LR) within the study (denoted by [+ amount added]).

IAS group

Species

Thermal optimum measure, value

Field method, study temp.

Location

Native population impacted

Effect size: LR

Effect size source; ref.

Study temp. ref.

Thermal optimum ref.

Crustacean

Bythotrephes longimanus

Juvenile growth rate, 20°C

Enclosure, 23.5°C

Saginaw Bay, Lake Huron

Ceriodaphnia spp.

3.50

Table 1; 1

1

2

Cycops bicuspidatus

0.12

Bosmina spp.

2.72

Copepod nauplii

0.39

Chydorus sphaericus

1.74

Daphnia retrocurva

2.79

Crustacean

Bythotrephes longimanus

Juvenile growth rate, 20°C

Enclosure, 23.5°C

Saginaw Bay, Lake Huron

Eubosmina coregoni

3.44

Table 1; 1

1

2

Asplanchna spp.

1.67

Enclosure, 21.9°C

Lake Huron

Copepod nauplii

1.23

Bythotrephes longimanus

Juvenile growth rate, 20°C

Mesocosm, 21.2°C

Kakakise Lake, Ontario

Zooplankton

0.73

Week 4 in Fig. 3a; 3

 3

2

Survey, 24°C

Harp Lake, Ontario

Zooplankton

0.13

1992 & 1995 in Fig. 3a; 4

4

Eriocheir sinensis

Larval development, 15–18°C

Mesocosm, 17.7°C

San Francisco Bay, CA

Cladophora spp.

1.84

Fig. 1; 5

5

6

Ludwigia spp.

0.98

Gumaga spp.

0.75

Corbicula spp.

0.34

Cercopagis pengoi

Egg development, 13°C

Survey, 8.9°C

Lake Ontario

Cyclopoid nauplii

2.45

August 1999 in Fig. 6; 7

7

8

Calanoid nauplii

1.78

Crustacean

Cercopagis pengoi

Egg development, 13°C

Survey, 16.8°C

Gulf of Riga, Baltic Sea

Bosmina coregoni

6.05

Month 9 in Fig. 2b & d; 9

9

8

Acartia spp.

0.09

Carcinus maenas

Larval development, 20–25°C

Enclosure, 11.9°C

Bodega Bay, CA

Cumella vulgaris

2.53

Table 2; 10

11

12

Transennella tantilla

0.81

Leptochelia dubia

0.94

Transennella confusa

1.52

Corophium spp.

1.45

Exogene spp.

0.48

Pseudopolydora spp.

0.76

Phoronopsis viridis

0.05

Crustacean

Mysis diluviana

Juvenile maturation & molting rate, 8–8.5°C

Enclosure, 9°C

Lake Michigan

Cladocera

20.88

August in Table 1; 13

13

14, 15

Diaptomid adults

0.96

Cyclopoid adults

0.00

Copepod nauplii

7.06

Diaptomid copepodites

2.72

Cyclopoid copepodites

8.14

Survey, 20.3°C

Flathead Lake, MT

Cladocera

0.32

August in Fig. 3a & b; 16

17

Copepod

0.59

Limnomysis benedeni

Egg & larval development, 15.9°C

Mesocosm, 15°C

University of Cologne, Germany

Bosmina spp.

1.36

Day 3 in Fig. 4; 18

18

19

Daphnia spp.

1.18

Copepod nauplii

0.18

Rotifera

0.48

Crustacean

Procambarus clarkii

Juvenile growth & molting rate, 16°C

Enclosure, 21.5°C

Lago della Doccia, Italy

Potamogeton filiformis

2.91

Fig. 1; 20

20

21

Nymphoides peltata

0.67

Haitia acuta

1.22

Mesocosm, 17.7°C

San Francisco Bay, CA

Cladophora spp.

1.69

Fig. 1; 22

22

Ludwigia spp.

0.17

Gumaga spp.

0.41

Corbicula spp.

0.02

Enclosure, 21.2°C

Santa Ynez River, CA

Benthic invertebrates

0.86

Fig. 4; 23

23

Enclosure, 21.7°C

Ventura River, CA

Benthic invertebrates

0.46

Exclosure, 18°C

Coyote Hills Marsh, CA

Potamogeton pectinatus

7.72

End of July in Fig. 5; 24

24

Mesocosm, 20.5°C

SW Iberia, Portugal

Bufo calamita

4.58 (+1)

5 day exposure in Fig. 2, 25

25

Crustacean

Procambarus clarkii

Juvenile growth & molting rate, 16°C

Mesocosm, 20.5°C

SW Iberia, Portugal

Discoglossus galganoi

1.55 (+1)

5 day exposure in Fig. 2, 25

25

21

Pelobates cultripes

1.74 (+1)

Peodytes ibericus

0.84 (+1)

Bufo bufo

2.77 (+1)

Alytes cisternasii

0.80 (+1)

Hyla arborea

0.77 (+1)

Hyla meridionalis

0.52 (+1)

Rana perezi

0.94 (+1)

Orconectes rusticus

Juvenile growth rate, 26–28°C

Enclosure, 23.5°C

Sugarbush Lake, WI

Vallisneria americana

0.53

Exp. 1, 3, & 5 in Fig. 1; 26

26

27

V. americana dominated macrophyte assemblage

0.03

Crustacean

Orconectes rusticus

Juvenile growth rate, 26–28°C

Enclosure, 23.5°C

Sparkling Lake, WI

Juncus pelocarpus dominated macrophyte assemblage

0.26

Exp. 1, 3, & 5 in Fig. 1; 26

26

27

Enclosure, 23.3°C

Plum Lake, WI

Macrophytes (12 spp.), excluding Elodea canadensis

2.30

Beginning of September in Fig. 2a & b, Fig. 5a; 28

29

E. canadensis

2.58

Gastropoda    (11 spp.)

4.12

Pacifastacus leniusculus

Juvenile growth rate, 23–26°C

Survey, 18.9°C

River Great Ouse, UK

Cottus gobio

0.12

Text on pg. 645; 30

30

31, 32

Noemacheilus barbatulus

0.18

Fish

Cyprinus carpio

Juvenile maximum scope for growth, 27°C

Exclosure, 25.3°C

Provo, Utah Lake

Potamogeton pectinatus

4.25 (+0.01)

Fig. 3; 33

33

34

Exclosure, 26.4°C

Saratoga, Utah Lake

P. pectinatus

0.84 (+0.01)

Fish

Cyprinus carpio

Juvenile maximum scope for growth, 27°C

Survey, 16°C

Acambay, Mexico

Macrophytes

1.05

Table 1; 35

35

34

Exclosure, 20°C

Lake Manitoba, Manitoba

Chara spp.

1.10

Fig. 2; 36

36

Exclosure, 20.7°C

Sulfur Springs, Lake Erie

P. pectinatus dominated macrophyte assemblage

1.71

August 28th in Table 2; 37

38

Salvelinus fontinalis

Juvenile growth rate, 13–16.1°C

Enclosure, 13.5°C

Cascades Stream, Quebec

Drifting invertebrates

0.33

Table 1; 39

39

40, 41

Salmo trutta

Juvenile growth rate, 10–15.6°C

Enclosure, 16.5°C

Shag River, New Zealand

Invertebrate predators

0.64

Table 1; 42

43

44

Invertebrate grazers

0.55

Fish

Salmo gairdneri

Juvenile growth rate, 17.2°C

Survey, 14.1°C

Lake Eucumbene creeks, New South Wales

Galaxiidae

6.66 (+0.01)

Table 3; 45

46

47

Carassius auratus

Growth rate, 25°C

Mesocosm, 27.1°C

Ste. Anne de Bellevue, Quebec

Potamogeton spp.

1.49

Text on pg. 579; 48

48

49

Neogobius melanostomus

Egg development, 19–21°C

Survey, 18.9°C

Door Peninsula, Lake Michigan

Dreissena polymorpha

1.03 (+1)

Table 2; 50

51

52, 53

Dreissena bugensis

3.42 (+1)

Isopoda

3.09 (+1)

Amphipoda

1.91 (+1)

Trichoptera

0.87 (+1)

Diptera

0.51 (+1)

Gastropoda

1.31 (+1)

Fish

Neogobius melanostomus

Egg development, 19–21°C

Survey, 24.3°C

St. Lawrence River, Quebec

Gastropoda (<14 mm)

3.84

2009 in Fig. 2a; 54

55

52, 53

D. polymorpha & D. bugensis (<14 mm)

1.96

Gambusia affinis

Growth rate, 28.6–30.9°C

Enclosure, 18°C

Walter Spring, UT

Iotichthys phlegethontis  (9–13 mm)

0.25

Fig. 1; 56

56

57

I. phlegethontis (23–28 mm)

0.49

Data cited

1.   Vanderploeg, H. A., J. R. Liebig, and M. Omair. 1993. Bythotrephes predation on Great Lakes zooplankton measured by an in situ method - implications for zooplankton community structure. Archiv für Hydrobiologie 127:1–8.

2.   Ketelaars, H. A. M., A. J. Wagenvoort, R. F. Herbst, P. A. W. Vandersalm, and G. A. J. Dejongepinkster. 1995. Life history characteristics and distribution of Bythotrephes longimanus Leydig (Crustacea, Onychopoda) in the Biesbosch Reservoirs. Hydrobiologia307:239–251.

3.   Strecker, A. L., and S. E. Arnott. 2005. Impact of Bythotrephes invasion on zooplankton communities in acid-damaged and recovered lakes on the Boreal Shield. Canadian Journal of Fisheries and Aquatic Sciences62:2450–2462.

4.   Yan, N. D., and T. W. Pawson. 1997. Changes in the crustacean zooplankton community of Harp Lake, Canada, following invasion by Bythotrephes cederstroemi. Freshwater Biology 37:409–425.

5.   Rudnick, D., T. Veldhuizen, R. Tullis, C. Culver, K. Hieb, and B. Tsukimura. 2005. A life history model for the San Francisco Estuary population of the Chinese mitten crab, Eriocheir sinensis (Decapoda : Grapsoidea). Biological Invasions 7:333–350.

6.   Anger, K. 1991. Effects of temperature and salinity on the larval development of the chinese mitten crab Eriocheir sinensis (Decapoda, Grapsidae). Marine Ecology Progress Series 72:103–110.

7.   Benoit, H.P., O. E. Johannsson, D. M. Warner, W. G. Sprules, and L. G. Rudstam. 2002. Assessing the impact of a recent predatory invader: the population dynamics, vertical distribution, and potential prey of Cercopagis pengoi in Lake Ontario. Limnology and Oceanography 47:626–635.

8.   Sopanen, S. 2008. The effect of temperature on the development and hatching of resting eggs of non-indigenous predatory cladoceran Cercopagis pengoi in the Gulf of Finland, Baltic Sea. Marine Biology 154:99–108.

9.   Ojaveer, H., M. Simm, and A. Lankov. 2004. Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia522, 261–269.

10.   Grosholz, E. D., and G. M. Ruiz. 1995. Spread and potential impact of the recently introduced European green crab, Carcinus maenas, in Central California. Marine Biology 122:239–247.

11.   Southern California Coastal Ocean Observing System. http://www.sccoos.org. Last accessed: 3/21/2013.

12.   Nagaraj, M. 1993. Combined effects of temperature and salinity on the zoeal development of the green crab, Carcinus maenas (Linnaeus, 1758) (Decapoda: Portunidae). Scientia Marina 57:1–8.

13.   Bowers, J. A., and H. A. Vanderploeg. 1982. In situ predatory behavior of Mysis relicta in Lake Michigan. Hydrobiologia 93:121–131.

14.   Berrill, M., and D. C. Lasenby. 1983. Life cycles of the fresh-water Mysid shrimp Mysis relicta reared at 2 temperatures. Transactions of the American Fisheries Society 112: 551–553.

15.   Johannsson, O. E., K. L. Bowen, C. M. Wood, R. W. Smith, C. Chu, L. G. Rudstam, and B. Boscarino. 2008. Relating nucleic acid and protein indices to growth in Mysis relicta: ration, cycling temperature, and metabolism. Aquatic Biology 4:33–46.

16.   Spencer, C. N., B. R. McClelland, and J. A. Stanford. 1991. Shrimp stocking, salmon collapse, and eagle displacement. Bioscience 41:14–21.

17.   Flathead Lake Biological Station. University of Montana. http://www2.umt.edu/flbs. Last accessed: 3/21/2013.

18.   Fink, P., A. Kottsieper, M. Heynen, and J. Borcherding. 2012. Selective zooplanktivory of an invasive Ponto-Caspian mysid and possible consequences for the zooplankton community structure of invaded habitats. Aquatic Sciences 74:191–202.

19.   Hanselmann, A. J., R. Gergs, and K. O. Rothhaupt. 2011. Embryonic development time of the freshwater mysid Limnomysis benedeni Czerniavsky as a function of water temperature. Aquatic Ecology 45:539–546.

20.   Gherardi, F., and P. Acquistapace. 2007. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biology 52:1249–1259.

21.   Paglianti, A., and F. Gherardi. 2004. Combined effects of temperature and diet on growth and survival of young-of-year crayfish: a comparison between indigenous and invasive species. Journal of Crustacean Biology 24:140–148.

22.   Rudnick, D., and V. Resh. 2005. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshwater Biology 50:1323–1336.

23.   Klose, K., and S. D. Cooper. 2012. Contrasting effects of an invasive crayfish (Procambarus clarkii) on two temperate stream communities. Freshwater Biology 57:526–540.

24.   Feminella, J. W., and V. H. Resh. 1989. Submersed macrophytes and grazing crayfish - an experimental study of herbivory in a California freshwater marsh. Holarctic Ecology 12:1–8.

25.   Cruz, M. J., and R. Rebelo. 2005. Vulnerability of Southwest Iberian amphibians to an introduced crayfish, Procambarus clarkii. Amphibia-Reptilia 26:293–303.

26.   Lodge, D. M., and J. G. Lorman. 1987. Reductions in submersed macrophyte biomass and species richness by the crayfish Orconectes rusticus. Canadian Journal of Fisheries and Aquatic Sciences 44:591–597.

27.   Mundahl, N. D., and M. J. Benton. 1990. Aspects of the thermal ecology of the rusty crayfish Orconectes rusticus (Girard). Oecologia 82:210–216.

28.   Lodge, D. M., M. W. Kershner, J. E. Aloi, and A. P. Covich. 1994. Effects of an omnivorous crayfish (Orconectes rusticus) on a fresh water littoral food web. Ecology75:1265–1281.

29.   Wisconsin Department of Natural Resources. http://dnr.wi.gov/lakes. Last accessed: 3/21/2013.

30.   Guan, R. Z., and P. R. Wiles. 1997. Ecological impact of introduced crayfish on benthic fishes in a British lowland river. Conservation Biology 11:641–647.

31.   Firkins, I., and D. M. Holdich. 1993. Thermal studies with three species of freshwater crayfish.Freshwater Crayfish 9:241-248.

32.   Ahvenharju, T. 2007. Food intake, growth and social interactions of signal crayfish, Pacifastacus leniusculus (Dana). PhD thesis, University of Helsinki, Helsinki.

33.   Miller, S. A., and T. A. Crowl. 2006. Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshwater Biology 51, 85–94.

34.   Goolish, E. M., and I. R. Adelman. 1984. Effects of ration size and temperature on the growth of juvenile common carp (Cyrpinus carpio L).Aquaculture 36:27–35.

35.   Zambrano, L., and D. Hinojosa. 1999. Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in central Mexico. Hydrobiologia 408:131–138.

36.   Evelsizer, V. D., and A. M. Turner. 2006. Species-specific responses of aquatic macrophytes to fish exclusion in a prairie marsh: a manipulative experiment. Wetlands26:430–437.

37.   King, D. R., and G. S. Hunt. 1967. Effect of carp on vegetation in a Lake Erie marsh. Journal of Wildlife Management 31:181–188.

38.   Petering, R. W., and D. L. Johnson. 1991. Distribution of fish larvae among artificial vegetation in a diked Lake Erie wetland. Wetlands 11:123–138.

39.   Bechara, J. A., G. Moreau, and L. Hare. 1993. The impact of brook trout (Salvelinus fontinalis)on an experimental stream benthic community - the role of spatial and size refugia. Journal of Animal Ecology62:451–464.

40.   Baldwin, N. S. 1956. Food consumption and growth of brook trout at different temperatures. Transactions of the American Fisheries Society 86:323–328.

41.   Hokanson, K. E. F., J. H. McCormick, and B. R. Jones. 1973. Thermal requirements for maturations, spawning and embryo survival of the brook trout, Salvelinus fontinalis.Journal of the Fisheries Research Board of Canada 30:975–984.

42.   Flecker, A. S., and C. R. Townsend. 1994. Community wide consequences of trout introduction in New Zealand streams. Ecological Applications 4:798–807.

43.   Caruso, B. S. 2001. Regional river flow, water quality, aquatic ecological impacts and recovery from drought. Hydrological Sciences Journal 46:677–699.

44.   Pentelow, F. T. K. 1939. The relation between growth and food consumption in the brown trout (Salmo trutta). Journal of Experimental Biology 16:446–473.

45.   Tilzey, R. D. J. 1976. Observations on interactions between indigenous Galaxiidae and introduced Salmonidae in Lake Eucumbene catchment, New South Wales. Australian Journal of Marine & Freshwater Research 27:551–564.

46.   Faragher, R. A. 1980. Life cycle of Hemicordulia tau Selys (Odonata: Cordulidae) in Lake Eucumbene, N. S. W., with notes on predation on it by two trout species. Journal of the Australian Entomological Society 19:269–276.

47.   Hokanson, K. E. F., C. F. Kleiner, and T. W. Thorslund. 1977. Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri. Journal of the Fisheries Research Board of Canada 34:639–648.

48.   Richardson, M. J., F. G. Whoriskey, and L. H. Roy. 1995. Turbidity of generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds. Journal of Fish Biology 47:576–585.

49.   Audige, P. 1921. Sur la croissance des poissons maintenus en milieu de temperature constant. Comptes Rendus de l'Académie des Sciences 172:287–289.

50.   Lederer, A., J. Massart, and J. Janssen. 2006. Impact of round gobies (Neogobius melanostomus) on dreissenids (Dreissena polymorpha and Dreissena bugensis) and the associated macroinvertebrate community across an invasion front. Journal of Great Lakes Research 32:1–10.

51.   Coast watch: Great Lakes surface water temperatures. Michigan Sea Grant. http://coastwatch.msu.edu. Last accessed: 3/21/2013.

52.   Charlebois, P. M., J. E. Marsden, R. G. Goettel, R. K. Wolfe, D. J. Jude, and S. Rudnicka. 1997. The round goby, Neogobius melanostomus (Pallus), a review of European and North American literature. Illinois-Indiana Sea Grant Program and Illinois Natural History Survey, INHS Special Publication No. 20.

53.   Moskal'kova, K. I. 1989. Anatomical-histological and functional peculiarities of development of the intestine in the round goby, Neogobius melanostomus, a species with direct type of development. Journal of Icthyology29:108–122.

54.   Kipp, R., I. Hébert, M. Lacharité, and A. Ricciardi. 2012. Impacts of predation by the Eurasion round goby (Neogobius melanostomus) on molluscs in the upper St. Lawrence River. Journal of Great Lakes Research 38:78–89.

55.   Kestrup, A. M., and A. Ricciardi. 2009. Environmental heterogeneity limits the local dominance of an invasive freshwater crustacean. Biological Invasions11:2095–2105.

56.   Mills, M. D., R. B. Rader, and M. C. Belk. 2004. Complex interactions between native and invasive fish: the simultaneous effects of multiple negative interactions. Oecologia 141:713–721.

57.   Jobling, M. 1981. Temperature tolerance and the final preferendum - rapid methods for the assessment of optimum growth temperatures. Journal of Fish Biology 19:439–455.


[Back to A025-040]