Ecological Archives M072-004-A1

H. Jochen Schenk and Robert B. Jackson. 2002. The global biogeography of roots. Ecological Monographs 72:311-328.

Appendix A.  List of studies compiled in the global database of vertical root profiles.

Biome or global vegetation type Reference Table or figure Geographic location Geographic coordinates Mean annual precipitation Soil type/texture Type of roots measured Sampling methods Measurement units Local vegetation Elevation Time of year
Arctic tundra Dennis and Johnson 1970 Fig. 2 Alaska, USA 71:20 N 156:39 W 104 mm 2 to 20 cm organic layer over loam total, live cores g m-2 to 30-60 cm five tundra vegetation types < 5 m June-September
Arctic tundra Dennis et al. 1978 Table 5 Alaska, USA 71:20 N 156:39 W 104 mm ~16 cm organic layer over loam total, live/dead, + rhizomes and buried stems cores g m-2 to 25 cm polygonized wet tundra, meadow, Carex, Eriophorum, Calamagrostis, Dupontia < 5 m June-August
Arctic tundra Ignatenko and Khakimzyanova 1971 Table 3 Komi, Russia 66:40 N 62:35 E 340 mm humus gravel soil and peat humus gley soil, 12-16 cm humus over sandy loam total, + rhizomes buried stems 25 × 25 cm monoliths g m-2 to 34 to 48 cm dwarf Birch, Dryas, Willow 143 m no information
Arctic tundra Ignatenko et al. 1972 Figs. 1-3 Taimyr Peninsula, Russia 72:27 N 101:57 E 243 mm cryogenic gley with 12-18 cm humus/peat layer over medium loam total < 5 mm 20 × 20 cm monoliths kg m-2 to permafrost at 46 to 64 cm Carex, Cassiope, Dryas, Hylocomium spotted tundra no information no information
Arctic tundra Khodachek 1971 Table III Taimyr Peninsula, Russia 73:20 N 90:37 E 338 mm permafrost at 20 to 55 cm total, 3 diameter classes 20 × 20 cm monoliths g m-2 to 46 to 50 cm hummock, spotted, and bog tundra, Salix, Dryas, Carex, mosses no information Summer
Arctic tundra Miller et al. 1982 Fig. 4 Central Alaska 65:26 N 145:30 W 235 mm living moss and humus layer 6 to >50 cm deep, permafrost at ~50 cm fine < 0.25 mm 10 × 10 cm monoliths % of total mass to 25-57 cm, total mass in kg m-3 montane tundra, six vegetation types + tussock tundra, 750 - 1050 m Summer
Arctic tundra Muc 1977 Table 5 Northwest Territories, Canada 75:33 N 84:40 W 185 mm fibric organo cryosol, organic material to >30 cm (permafrost below) total 6.5 cm cores g m-2 to 25 cm hummocky and hollow sedge-moss meadow, Carex, Eriophorum 50 m Summer
Boreal forest Abaimov et al. 1997 Table 2 Central Siberia 64:18 N 100:11 E 391 mm permafrost soil fine < 1 mm no information g dm-3 to 70 cm various stages of post-fire succession in Larix gmelinii forest no information no information
Boreal forest Bhatti et al. 1998 Fig. 1 Ontario, Canada 49:03 N 81:30 W 838 mm >40 cm peat over lacustrine clay soil fine < 5 mm 8 × 8 × 40 cm cores kg m-3 to 30 cm Picea mariana, Alnus rugosa, Sphagnum spp. no information July
Boreal forest Damman 1971 Fig. 8 Newfoundland, Canada 48:27 N 58:24 W 1200 mm raw humus (~6 cm); loamy sand over sandy, glaciofluvial deposits fine < 10 mm 500 cm2 frames in humus and 100 cm3 cores kg ha-1 to 87.5 cm Abies balsamea, Picea mariana < 50 m October
Boreal forest Finér et al. 1997 Fig. 1 NW Quebec, Canada 48:30 N 79:20 W 823 mm 5 to 8 cm organic layer over clay deposits fine < 10 mm, 4 diameter classes 38 cm2 cores g m-2 and length (km m-2 ) to 30 cm Populus, Betula, Abies, Picea, Thuja 300 m June
Boreal forest Ignatenko et al. 1972 Figs. 1-3 Taimyr Peninsula, Russia 72:27 N 101:57 E 243 mm loam/sandy loam, permafrost at 40-70 cm total < 5 mm 20 × 20 cm monoliths kg m-2 to permafrost (at 48 to 67 cm) Larix gmelinii woodland 30 - 150 m Summer
Boreal forest Karpov 1983 Fig. 6 Valdai Hills, Russia 56:32 N 31:50 E 640 mm podzolic gleys, water table at 3 to 40 cm total 19.6 cm2 cores surface area in ha ha-1 to 30 cm Picea abies, Sorbus, Betula, Vaccinium, Sphagnum 230 - 270 m no information
Boreal forest Kimmins and Hawkes 1978 Tables 2 and 6 British Columbia, Canada 54:40 N 122:14 W 813 mm sandy podzol live fine < 6.4 mm, trees/understory 10 × 10 × 10 cm cores g m-2 and g m-3 to 80 cm Picea glauca, Abies lasiocarpa no information July and August
Boreal forest Persson 1982 Table 2 Central Sweden 60:49 N 16:30 E 607 mm iron-podzol, 7 cm humus layer, fine sand live/dead < 10 mm, 3 diameter classes, trees/understory 6.7 cm cores g m-2 to 60 cm Pinus sylvestris forest with Calluna/Vaccinium understory 185 m June and September
Boreal forest Pietikäinen et al. 1999 Fig. 1 Finland 61:48 N 24:19 E 709 mm podzol, fine to coarse sand total, fine < 2 mm 4.6 cm cores kg m-3 to 80 to 85 cm Pinus sylvestris, Picea abies, with Vaccinium understory 152 m Summer
Boreal forest Plamboeck et al. 1999 Fig. 4 N Sweden 64:14 N 19:46 E 571 mm Regosol, loamy sand to sandy loam total < 10 mm, fine < 2 mm 20 × 20 cm monoliths g m-2 to 55 cm Pinus sylvestris forest with Vaccinium vitis-idea, V. myrtillus 225 m July to August
Boreal forest Saurina and Kamenetskaya 1969 Table 2 Vologda, Russia 59:12 N 38:30 E 550 mm podzol fine 0.6 - 5 mm 25 × 25 cm monoliths g m-2 and number of roots to 240 cm Pinus sylvestris, Calluna, Carex no information no information
Boreal forest Steele et al. 1997 Fig. 1 Saskatchewan and Manitoba, Canada 53:55 N 105:00 W 405 mm 20-30 cm humus over sandy loam fine < 5 mm Mini-rhizotrons length (m m-2 ) to 35 cm Pinus banksiana, Alnus crispa, and Betula papyrifera no information September
Boreal forest Steele et al. 1997 Fig. 1 Saskatchewan and Manitoba, Canada 55:54 N 98:30 W 536 mm 30-50 cm humus over clay fine < 5 mm Mini-rhizotrons length (m m-2 ) to 35 cm Pinus banksiana, Alnus crispa, and Betula papyrifera no information September
Boreal forest Strong and La Roi 1983 Figs. 2 and 3 Alberta, Canada 55:10 N 114:08 W 475 mm Eutric Brunisols (sand), gray Luvisols (clay loam), and organic soils total Profile wall number 100 cm-2 to 125 cm Picea, Pinus, Populus, Larix, 11 stands no information Summer
Boreal forest Tryon and Chapin 1983 Fig. 6 Alaska, USA 65:06 N 147:02 W 220 mm no information fine < 1mm, coarse > 1 mm Excavation and 6.7 cm cores g m-2 to 30, 50, or 100 cm Picea mariana, Populus tremuloides, P. balsamifera no information August
Boreal forest Uchida et al. 1998 Table 2 Saskatchewan, Canada 53:50 N 105:30 W 389 mm 19 cm humus over loamy sand total, 3 diameter classes 50 × 50 cm monoliths g m-2 to 44 cm depth Picea mariana 500 m July
Cool-temperate conifer forest Kern et al. 1961 Fig. 3, Table 7 SW Germany 47:44 N 8:00 E 1854 mm podzolic brown soil, brown soil-gley, podzolic gley fine < 2 mm, 2 diameter classes 250 cm3 cores length (cm 1000 cm-3) to 60 or 110 cm montane forest and plantations, Picea abies, Abies alba, Fagus sylvatica 950 m no information
Cool-temperate conifer forest Lutz et al. 1937 Table II and text New Hampshire, USA 42:56 N 72:16 W 1016 mm gray-brown podzolic soil, sandy loam to loamy sand total Profile wall number per horizon to ~180 cm Pinus strobus, 35- to 45-years-old no information no information
Cool-temperate conifer forest Nnyamah and Black 1977 Fig. 12 Vancouver Island, Canada 49:50 N 125:17 W 1100 mm Duric Humo-Ferric Podzol, gravelly sandy loam fine < 2 mm 7.3 cm cores mg cm-3 to 78 cm Pseudotsuga menziesii, 2 natural stands (thinned and unthinned) 150 m August
Cool-temperate conifer forest Puhe et al. 1986 Fig. 7 S Sweden 57:26 N 12:15 E 960 mm podzolic brown soil fine < 2 mm, 2 diameter classes, live/dead cores g 1000 cm-3 to 30 cm Picea abies forest 120 to 180 m late fall
Cool-temperate conifer forest Puhe et al. 1986 Fig. 7 S Sweden 56:38 N 13:03 E 1040 mm iron-humus podzol 2 diameter classes, cores g 1000 cm-3 to 30 cm Picea abies forest 70 m late fall
Cool-temperate conifer forest Puhe et al. 1986 Fig. 7 S Sweden 56:12 N 15:23 E 610 mm podzolic brown soil live/dead cores g 1000 cm-3 to 30 cm Picea abies forest 60 m late fall
Cool-temperate conifer forest Safford and Bell 1972 Table 1 Maine, USA 44:56 N 68:39 W 1033 mm silt loam fine < 3 mm 15 × 15 cm monoliths and 4.75 cm cores kg m-3 to 45 cm Picea glauca plantation, 39-years-old no information no information
Cool-temperate conifer forest Vyskot 1973 Table VI Czech Republic 49:19 N 16:40 E 628 mm brown forest sandy clay, pseudogley total, 4 diameter classes Excavation g fresh mass per tree and volume (cm3) to 100 cm Abies alba stand (39 yrs. old) 460 m no information
Cool-temperate conifer forest Weaver 1977 Table 4 Montana, USA 45:44 N 110:58 W 550 mm loam live < 5 mm 2 cm cores g m-2 to 70 cm Pseudotsuga, Symphoricarpus 1650 m June
Cool-temperate conifer forest Weaver 1977 Table 4 Montana, USA 45:55 N 110:55 W 900 mm loam live < 5 mm 2 cm cores g m-2 to 70 cm Abies, Vaccinium 1810 m June
Cool-temperate conifer forest Weaver 1977 Table 4 Montana, USA 45:55 N 110:55 W 900 mm loam live < 5 mm 2 cm cores g m-2 to 70 cm Pseudotsuga, Calamagrostis 1830 m June
Cool-temperate conifer forest Weaver 1977 Table 4 Montana, USA 45:52 N 110:57 W 900 mm sandy loam live < 5 mm 2 cm cores g m-2 to 70 cm Abies, Vaccinium 2360 m June
Cool-temperate conifer forest Wright 1955 Fig. 1 Morayshire, Scotland 57:37 N 3:44 W 607 mm coarse and fine sand total Cubic monoliths of 15.24 cm length g 3539.6 cm-3 to 152.4 cm Pinus laricio, P. sylvestris plantations on dunes <100 m July-August
Cool-temperate conifer forest Wright 1955 Fig. 1 Morayshire, Scotland 57:37 N 3:44 W 607 mm coarse and fine sand total Cubic samples of 15.24 cm length g 3539.6 cm-3 to 152.4 cm 40 year-old Betula pubescens forest on dunes <100 m July-August
Cool-temperate broadleaved forest Ellenberg et al. 1986 Tables 19 and 20 Lower Saxony, Germany 51:46 N 9:33 E 1060 mm acidic brown soil, loam fine < 2 mm 100 cm3 cores mg 100 cm-3 to 84 or 94 cm Fagus sylvatica 500 m May to November
Cool-temperate broadleaved forest Garelkov 1973 Table 3 W Balkan Mountains, Bulgaria 43:06 N 23:07 E 1100 mm brown forest soil fine < 1 mm, coarse > 1 mm monoliths Mg ha-1 to 100 cm montane Fagus sylvatica forests 1400-1600 m no information
Cool-temperate broadleaved forest Glatzel 1983 Fig. 3 SE Austria 47:03 N 16:27 E 750 mm heavy pseudogley, silt loam fine < 2 mm, coarse > 2 mm 7 cm cores g cm-1 m-2 to 100 cm Quercus petraea, Q. robur, Carpinus betulus 240 m no information
Cool-temperate broadleaved forest Hendriks and Bianchi 1995 Table 3 The Netherlands 52:16 N 5:41 E 760 mm fine loamy brown podzol, siliceous, mesic Entic Haplorthod fine < 2 mm 750 cm3 cores length (cm cm-3) to 90 cm Fagus sylvatica forest and Fagus sylvatica-Pseudotsuga menziesii plantation no information no information
Cool-temperate broadleaved forest Hertel 1999 Fig. 4-9 Solling, Germany 51:46 N 9:35 E 1031 mm acidic brown soil, loam fine < 2 mm, live/dead 100 cm3 cores g cm-3 to 160 cm Fagus sylvatica 510 m May to September
Cool-temperate broadleaved forest Hertel 1999 Fig. 4-9 Lüneburger Heide, Germany 52:50 N 10:17 E 801 mm podzolic brown soil, sand fine < 2 mm, live/dead 100 cm3 cores g cm-3 to 160 cm Fagus sylvatica 115 m May to September
Cool-temperate broadleaved forest Hertel 1999 Fig. 4-9 Göttinger Wald, Germany 51:31 N 10:03 E 712 mm rendzina, silty clay loam fine < 2 mm, live/dead 100 cm3 cores g cm-3 to 160 cm Fagus sylvatica 420 m May to September
Cool-temperate broadleaved forest Hertel 1999 Fig. 4-9 Allstedt, Germany 51:23 N 11:26 E 500 mm brown soil, loamy sand fine < 2 mm, live/dead 100 cm3 cores g cm-3 to 160 cm Fagus sylvatica 280 m May to September
Cool-temperate broadleaved forest Kalisz et al. 1987 Fig. 2 Kentucky, USA 37:27 N 83:08 W 1170 mm stony, sandy loams to silt loams total 10.4 cm cores length (m m-3) to bedrock at 86 or 109 cm Quercus spp., Fagus, Carya, Liriodendron no information no information
Cool-temperate broadleaved forest Kochenderfer 1973 Table 1 West Virginia, USA 39:07 N 79:34 W 1300 mm loams and silt loams total Profile wall % of intersection to 210 cm 3 forest types: northern hardwood, cove hardwood, and oak-hickory 457-1067 m no information
Cool-temperate broadleaved forest Kreutzer 1968 Table 2 Baden-Württemberg, Germany 48:04 N 9:57 E 830 mm pseudogley, loam, over gravelly soil total, 5 diameter classes 1 m2 monoliths biomass, no units given, to 90 (110) cm 10 tree species, incl. 2 conifers, Quercus, Fagus, Carpinus, Alnus, Betula, Picea, Abies 607 m no information
Cool-temperate broadleaved forest Lucot and Bruckert 1992 Fig. 5 Franche-Comté, France 47:08 N 6:00 E 1100 mm silty clay loam, limestone bedrock at 4.2 m total, 4 diameter classes Profile wall area of intersections (cm2 100 cm-2 ) and % of total to 400 cm Quercus robur 355 m Spring
Cool-temperate broadleaved forest McClaugherty et al. 1982 Table 1 Massachusetts, USA 42:30 N 72:12 W 1050 mm Entic Haplorthods (Spodosols), very stony sandy loam fine < 3 mm, live/dead 19 mm and 50 mm cores Mg/ha to depth of rooting zone, to 60-120 cm mixed hardwood stand no information Mean annual
Cool-temperate broadleaved forest Safford 1974 Table 1 New Hampshire, USA 44:06 N 71:09 W 1270 mm Typic Fragiorthod, coarse loam fine < 3 mm 10 × 10 cm samples from profile wall g 100 cm-3 to 81 cm Fagus, Acer, and Betula 300 m June to July
Cool-temperate broadleaved forest Schulze et al. 1996 Table 3 Patagonia, Argentina 44:50 S 71:43 W 770 mm 0.15 cm humus over loam, large rocks at >1.05 m total Monoliths g m-2 to 200 cm Nothofagus pumila forest 1080 m March
Cool-temperate broadleaved forest Schulze et al. 1996 Table 3 Patagonia, Argentina 44:51 S 71:35 W 520 mm 0.05 cm humus over silt, loamy sand, gravelly sand total Monoliths g m-2 to 225 cm Nothofagus antarctica scrub 960 m March
Cool-temperate broadleaved forest Scully 1942 Table 2 Wisconsin, USA 42:34 N 88:29 W 800 mm Bellefontaine silt loam to 0.33 m, sandy clay below total Profile wall number 929 cm-2 ; % root area 929 cm-2 , to 91.4 cm maple-oak forest <1030 m Summer
Cool-temperate broadleaved forest Weaver 1977 Table 4 Montana, USA 45:41 N 111:02 W 550 mm loam live, fine < 5 mm 2 cm cores g m-2 to 70 cm Populus, Symphoricarpus 1560 m June
Cool-temperate broadleaved forest Weaver 1977 Table 4 Montana, USA 45:55 N 110:55 W 900 mm loam live, fine < 5 mm 2 cm cores g m-2 to 70 cm Populus, Poa 1830 m June
Cool-temperate broadleaved forest Yin et al. 1989 Fig. 1 Wisconsin, USA 44:06 N 91:12 W 792 mm Typic Hapludalf, loam and silt loam fine < 2 mm 10 cm cores % biomass to 60 cm Quercus rubra forest no information November
Cool-temperate broadleaved forest (conifer plantation) Gehrmann et al. 1984 Fig. 6 Lower Saxony, Germany 51:57 N 9:44 E 781 mm podzol fine < 2 mm Root cores no information Picea abies plantation no information no information
Cool-temperate broadleaved forest (conifer plantation) Glatzel 1983 Fig. 3 SE Austria 47:03 N 16:27 E 750 mm heavy pseudogley, silt loam fine < 2 mm, coarse, > 2 mm 7 cm cores g cm-1 m-2 to 100 cm Picea abies plantation (16 yrs. old) 240 m no information
Cool-temperate broadleaved forest (conifer plantation) Hendriks and Bianchi 1995 Table 3 The Netherlands 52:15 N 5:41 E 760 mm fine loamy brown podzol, silicaceous, mesic Entic Haplorthod fine < 2 mm 750 cm3 cores length (cm cm-3) to 90 cm Pseudotsuga menziesii plantations, 40- and 60-years-old no information no information
Cool-temperate broadleaved forest (conifer plantation) McClaugherty et al. 1982 Table 1 Massachusetts, USA 42:30 N 72:12 W 1050 mm Entic Haplorthods (Spodosol), very stony, sandy loam fine < 3 mm, live/dead 19 mm and 50 mm soil cores Mg ha-1 to 60 to 120 cm Pinus resinosa plantation, 53-years old no information Mean annual
Cool-temperate broadleaved forest (conifer plantation) Olsthoorn 1991 Table 2 The Netherlands 52:11 N 5:46 E 760 mm Leptic podzol, sand live fine < 2 mm, coarse > 5 mm 8 cm cores kg ha-1 and cm cm-3 to 80 cm Pseudotsuga menziesii plantation no information Summer of 3 years
Cool-temperate broadleaved forest (conifer plantation) Olsthoorn 1991 Table 2 The Netherlands 52:15 N 5:41 E 760 mm Orthic podzol, loamy sand live fine < 2 mm, coarse > 5 mm 8 cm cores kg ha-1 and cm cm-3 to 80 cm Pseudotsuga menziesii plantation no information Summer of 3 years
Cool-temperate broadleaved forest (conifer plantation) Persson et al. 1995 Table 1 SW Sweden 56:33 N 13:13E 720 mm Haplic podzol, loamy sand fine < 1 mm, live/dead Monoliths g m-2 to 100 cm Picea abies plantation 100 m June
Cool-temperate broadleaved forest (conifer plantation) Reynolds 1970 Table 4 Oxford, England 51:43 N 1:15 W 650 mm coarse sand or sandy loam total 6 cm cores kg m-2 to 107 cm Pseudotsuga menziesii plantation, 36-years-old no information no information
Cool-temperate broadleaved forest (conifer plantation) Roberts 1976 Table 1 East Anglia, England 52:25 N 0:44 E 570 mm acidic sand (0.5-1.5 m thick) over chalky drift total live 7.62 cm cores length (cm cm-2 and cm cm-3) to 183 cm Pinus sylvestris plantation no information Mean of 7 months
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 53:08 N 9:47 E 740 mm Syrosem fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 70 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 52:36 N 10:02 E 700 mm iron-humus podzol fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 40 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 53:08 N 9:47 E 740 mm podzol-brown soil fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 85 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 52:50 N 10:17 E 705 mm mire fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 78 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 52:41 N 10:08 E 700 mm podzolic brown soil fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 68 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 53:04 N 10:34 E 600 mm para-brown soil fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 55 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 52:15 N 11:02 E 630 mm pseudogley brown soil fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 145 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Scherfose 1990 Fig. 6 Lower Saxony, Germany 51:35 N 9:51 E 610 mm Terra fusca brown soil fine < 2 mm, live/dead 20 × 20 × 100 cm monoliths kg ha-1 and # of root tips to 100 cm Pinus sylvestris plantation 180 m spring and fall
Cool-temperate broadleaved forest (conifer plantation) Xu 1991 Table 17 Rheinland-Pfalz, Germany 50:00 N 7:06 E 700 - 1000 mm pseudogley and brown soil fine < 5 mm, 2 diameter classes Profile wall number 0.2 m-2 to 100 cm Abies grandis and Picea abies plantations 300 - 550 m no information
Warm-temperate forest Chen et al. 1994 Tables 4 and 6 W Guangdon Province, S China 23:27 N 111:53 E 1744 mm red, fine-textured soil live, total, fine < 3 m Profile wall and 4 cm cores number 5 m-2 to 500 cm; g m-2 to 100 cm lower montane evergreen forest 400 m no information
Warm-temperate forest Davis et al. 1983 Table 1 Tasmania, Australia 41:23 S 146:23 E 1100 mm kraznozem total 10.16 cm cores length (mm cm-3) to 80 cm Pinus radiata plantations no information Winter
Warm-temperate forest Davis et al. 1983 Table 1 Tasmania, Australia 42:05 S 145:17 E 1300 mm groundwater podzol total 10.16 cm cores length (mm cm-3) to 80 cm Pinus radiata plantations no information Winter
Warm-temperate forest Davis et al. 1983 Table 1 Tasmania, Australia 41:21 S 146:30 E 1100 mm podzol total 10.16 cm cores length (mm cm-3) to 80 cm Pinus radiata plantations no information Winter
Warm-temperate forest Davis et al. 1983 Table 1 Tasmania, Australia 41:21 S 146:30 E 1100 mm podzol total 10.16 cm cores length (mm cm-3) to 80 cm Pinus radiata plantations no information Winter
Warm-temperate forest Davis et al. 1983 Table 1 Tasmania, Australia 41:14 S 147:31 E 1100 mm podzol total 10.16 cm cores length (mm cm-3) to 80 cm Pinus radiata plantations no information Winter
Warm-temperate forest Duncan 1941 Table 7 North Carolina, USA 35:59 N 78:58 W 1190 mm Congaree clay loam, Georgeville clay, and Orange loam total Profile wall number per 929 cm2 to 45.7 cm Liquidambar, Liriodendron, Quercus, Acer, Platanus, Betula, Pinus no information no information
Warm-temperate forest Farrish 1991 Table 2 Louisiana, USA 33:00 N 92:41 W 1300 mm fine-loamy, siliceous, Theric Typic Paleudults, loamy sand over clay loam live, fine < 3 mm 8 cm cores mass (mg cm-3) and surface area (cm2 cm-3) to 90 cm Pinus taeda, Quercus falcata, Acer rubrum, Liquidambar no information Various
Warm-temperate forest Harris et al. 1977 Table 3 and Fig. 3 North Carolina, USA 35:56 N 79:19 W 1160 mm Typic Hapludults, loam total, 4 diameter classes monoliths and 10 cm cores kg ha-1 to 60 and 70 cm Pinus taeda plantation, 15-years-old no information Mean annual
Warm-temperate forest Harris et al. 1977 Table 3 and Fig. 3 Tennessee, USA 36:01 N 84:16 W 1390 mm Typic Paleudults, silt loam total, 4 diameter classes monoliths and 10 cm cores kg ha-1 to 60 and 70 cm mixed deciduous forest, Liriodendron tulipifera no information Mean annual
Warm-temperate forest Isagi et al. 1997 Fig. 1 Central Honshu, Japan 34:56 N 135:46 E 1581 mm no information total + rhizomes 100 × 100 × 90 cm monoliths g m-2 to 90 cm bamboo stand, Phyllostachys pubescens 65 m October
Warm-temperate forest Karizumi 1978 Table 2.2-7 Honshu, Japan no information no information no information total monoliths % mass to 240 cm conifer plantations no information no information
Warm-temperate forest Karizumi 1978 Table 2.2-7 SW Honshu, Japan 32:10 N 130:28 E 2680 mm brown forest soil total monoliths % root mass by depth to 240 cm evergreen oak forest, Cyclobalanopsis and Castanopsis 440 m December
Warm-temperate forest Parker and Van Lear 1996 Fig. 1 South Carolina, USA 34:41 N 82:49 W 1350 mm clay to sandy clay loams total Profile wall number to 100 cm Pinus taeda no information no information
Warm-temperate forest Qiu et al. 1984 Fig. 3 Yunnan, China 24:33 N 101.02 E >1000 mm yellow-brown soils total monoliths to 150 cm montane evergreen forest, Lithocarpus, Castanopsis 2500 m April-May
Warm-temperate forest Qiu et al. 1992 Fig. 6.7 Zhejiang Province, China 30:01 N 120:15 E 1800 mm acidic red soil over sandstone (at ~ 0.6 m) total 20 × 20 cm soil pits kg m-2 to 100 cm bamboo stand, Phyllostachys pubescens 100 m spring
Warm-temperate forest Rui et al. 1999 Fig. 5 Sichuan, China 29:50 N 106:26 E 1123 mm acidic, yellowish sandy soil total, live, dead, 3 diameter classes, + rhizomes 100 × 100 × 90 cm monoliths Mg ha-1 to 90 cm bamboo stand, Phyllostachys pubescens 215 m no information
Warm-temperate forest Turner 1936 Table 1 Arkansas, USA 34:01 N 93:56 W 1270 mm Hanceville fine sandy loam total, 6 diameter classes Profile wall number to 91 cm Pinus echinata forests 120 m no information
Warm-temperate forest Turner 1936 Table 1 Arkansas, USA 33:13 N 91:48 W 1370 mm Caddo silt loam total, 6 diameter classes Profile wall number to 91 cm Pinus echinata forests 50-60 m no information
Warm-temperate forest Turner 1936 Table 1 Arkansas, USA 33:13 N 93:14 W 1120 mm Susquehanna fine sandy loam total, 6 diameter classes Profile wall number to 91 cm Pinus echinata forests 100 m no information
Warm-temperate forest Van Rees and Comerford 1986 Table 2 Florida, USA 29:40 N 82:15 W 1330 mm Ultic Haplaquads, sand to 105 cm, sandy loam to sandy clay loam below total 10 cm cores g m-2 to 245 cm Pinus elliottii with understory of Serenoa repens, Ilex glabra 53 m May
Temperate or boreal heathland Aerts 1993 Figs. 3.8 The Netherlands 52:02 N 5:50 E 800 mm humus podzol total 10 ×50 cm monoliths g m-2 and % of total to 100 cm dry heathland, Calluna vulgaris, Molinia caerulea, Deschampsia flexuosa no information August
Temperate or boreal heathland Chapman 1970 Fig. 1 Dorset, England 50:43 N 2:49 W 800 mm well-developed humus-iron podzols, sand total 9 cm cores kg ha-1 to 40 cm dry heathland, Calluna vulgaris, Ulex minor 15 m July
Temperate or boreal heathland Damman 1971 Fig. 8 Newfoundland, Canada 48:27 N 58:24 W 1200 mm raw humus (~30 cm), loamy sand over sandy glaciofluvial deposits total < 10 mm 500 cm2 frames (humus) and 100 cm3 cores kg ha-1 to 87.5 cm Kalimia angustifolia < 50 m October
Temperate or boreal heathland Groves and Specht 1965 Figs. 3 and 4 Victoria, SE Australia 39:00 S 146:17 E 1090 mm deep aeolian sand live/dead 4.2 cm cores kg 0.0762 m-3 to 152.4 cm coastal "sand heath" no information no information
Temperate or boreal heathland Groves and Specht 1965 Figs. 3 and 4 Victoria, SE Australia 38:52 S 146:23 E 1090 mm groundwater podzol, sand over clayey sand live/dead 4.2 cm cores kg 0.0762 m-3 to 61 cm costal "wet heath", Casuarina, Leptospermum no information no information
Meadow in the temperate or boreal forest zone Bickova and Zirin 1963 (cited in Evdokimova and Grishina 1968) Vladimir, Russia 56:15 N 41:15 E 591 mm soddy meadow soil, meadow soil, boggy soil, water table at 120 to 350 cm Total monoliths 50 kg ha-1 to 80 cm flood plain meadows on three soil types no information no information
Meadow in the temperate or boreal forest zone Ellenberg et al. 1986 Table 46 Lower Saxony, Germany 51:46 N 9:32 E 1060 mm acidic brown soil, loam total, incl. rhizomes cores Mg ha-1 to 60 cm Trisetum, Festuca meadow 500 m 2 year average
Meadow in the temperate or boreal forest zone Fiala and Studeny 1988 Table 1 Czech Republic 49:43 N 15:58 E 700-850 mm no information given live/dead 9.6 cm cores kg m-2 and % of total to 30 cm Nardus stricta 625 mm July
Meadow in the temperate or boreal forest zone Fiala 1990 Table 5 Czech Republic 49:40 N 16:00 E 700-850 mm no information given total, live/dead 9 cm cores kg m-2 and % of total to 30 cm three meadow communities 630-70 m August
Meadow in the temperate or boreal forest zone Gisi and Oertli 1981 Fig. 2 Switzerland 47:25 N 7:29 E 800 mm clay loam total, incl. rhizomes 100 cm3 cores kg m-3 to 25 cm montane meadow 785 m April to September
Meadow in the temperate or boreal forest zone Linkola and Tiirikka 1936 Table 7 Karelia, Russia 61:36 N 30:41 E 570 mm sand, sand over loam, or loam total, incl. rhizomes 20 × 20 cm monoliths g 400 cm-2 and % of total to 120 cm 3 types of meadows, dry to moist no information no information
Meadow in the temperate or boreal forest zone Plewczynska-Kuras 1976 Table 4 Warsaw, Poland 52:17 N 21:03 E 548 mm brown alluvial medium gleyed soils, loamy sand, water table at 0.5 to 1.5 m total 11.3 cm cores g m-2 to 3 cm meadows no information April to November
Meadow in the temperate or boreal forest zone Wright 1955 Fig. 1 Morayshire, Scotland 57:37 N 3:44 W 607 mm coarse and fine sand total Cubic samples of 15.24 cm length g 3539.6 cm-3 to 152.4 cm dune meadow, Ammophila arenaria, Carex arenaria, Calluna vulgaris <100 m July-August
Meadow in the temperate or boreal forest zone Yano and Kayama 1975 Table 6.2-3 N Honshu, Japan 38:44 N 140:15 E 1600 mm clay or clay loam total 0.1 × 0.5 × 1.1 m monoliths g m-2 to 60 or 110 cm Miscanthus sinensis 500 m July to November
Meadow in the temperate or boreal forest zone Yano and Kayama 1975 Fig. 6.2-7 central Honshu, Japan 35:10 N 134:45 E 2313 mm clay or clay loam total 0.1 × 0.5 × 1.1 m monoliths g m-2 to 60 or 110 cm Miscanthus sinensis 810 m July to November
Prairie and other mesic grasslands Ares and Peinemann 1992 Table 7 Sierra de la Ventana, Argentina 38:00 S 62:02 W 670 - 920 mm primarily Mollisols, pure loess, loam fine < 2 mm 7 cm cores and monoliths kg ha-1 to 50 cm conifer plantations, Pinus halepensis, P. radiata, Cedrus deodara, Cupressus sempervirens 300 to 600 m Autumn
Prairie and other mesic grasslands Barker et al. 1988 Fig. 1 North Island, New Zealand 40:20 S 175:52 E 1246 mm no information total 5 cm cores mass (kg m-3), length (km m-3), surface area (m2 m-3) to 80 cm Agrostis, Lolium, Cynosurus, Holcus, Trifolium no information January
Prairie and other mesic grasslands Dahlman and Kucera 1965 Table 1 Missouri, USA 38:57 N 91:56 W 1016 mm fine loess with clay pan total 4.2 cm cores g m-2 to 86.4 cm tallgrass prairie, Andropogon gerardi, Andropogon scoparius no information April to January
Prairie and other mesic grasslands Greenwood and Hutchinson 1998 Fig. 1 New South Wales, Australia 30:38 S 151:34 E 793 mm gleyed podzolic prairie soil and "wiesenboden" total, 5 diameter classes 3.85 cm cores length (cm cm-3) to 75 cm, also volume and surface area Phalaris aquatica, Trifolium repens 1065 m January/February
Prairie and other mesic grasslands Joffre et al. 1987 Table 2 and Fig. 2 Andalucía, S Spain 37:41 N 5:55 W 720 mm sandy silt, granitic total 900 cm2 monoliths mass in g m-2 and length in cm cm-3 to 60 cm Mediterranean grassland, annual Vulpia ssp. and perennial Phalaris aquatica no information October to May
Prairie and other mesic grasslands McKell et al. 1962 Fig. 2 California, USA 38:58 N 123:07 W 889 mm Sutherlin fine gravelly clay loam Macro-organic matter 6 cm cores g 929 cm-2 to 61 cm unimproved annual grassland 670 m Spring
Prairie and other mesic grasslands Old 1969 Table 8 Illinois, USA 40:10 N 88:10 W 910 mm Mollisol or Alfisol total 8 cm cores g m-2 to 100 cm tallgrass prairie, Andropogon gerardi, Sorghastrum nutans no information no information
Prairie and other mesic grasslands Shackleton et al. 1988 Table 2 Mkambati Game Reserve, South Africa 31:17 S 30:00 E 1200 mm Tristachya site: loamy sand; Cymbopogon site: silty clay total 8.2 cm cores g m-2 and % of total to 100 cm Tristachya leucothrix, Cymbopogon validus 80 and 300 m April
Prairie and other mesic grasslands Shalyt and Zhivotenko 1968 Table 3 Crimean Peninsula, Ukraine 44:32 N 34:12 E 1000 mm meadow soil total, 3 diameter classes, + rhizomes monoliths g m-2 to 30 cm montane 'Jaila' steppe 1300 m June to July
Prairie and other mesic grasslands Shalyt 1950 Tables 3-7 Dubrovka, Ukraine 50:20 N 27:24 E 590 mm podzols, clayey sand or sandy loam total (in tables), 50 × 50 cm monoliths g m-2 to 100 to 240 cm Nardus stricta no information no information
Prairie and other mesic grasslands Shalyt 1950 Table 19 Streletskaya steppe, Russia 51:43 N 36:13 E 590 mm Haplic chernozem, clay loam fine/coarse, 50 × 50 cm monoliths g m-2 to 100 to 240 cm Poa, Koeleria 230 m no information
Prairie and other mesic grasslands Sims and Singh 1978 Table 2 Bridger (Montana) 45:57 N 110:47 W 900 mm silt loam, stony total cores g m-2 to up to 60 cm montane steppe 2340 m no information
Prairie and other mesic grasslands Weaver and Darland 1949 Tables 2-4 E Nebraska, USA 40:53 N 96:42 W 700 mm silt clay loam, clay loam total, incl. rhizomes 7.6 × 29.9 cm monoliths g 3466 cm-3 to 91.4 or 152.4 cm tallgrass/mixed prairie no information no information
Prairie and other mesic grasslands Weaver and Darland 1949 Tables 2-4 E Nebraska, USA 40:18 N 97:40 W 680 mm silt loam to clay loam total, incl. rhizomes 7.6 × 29.9 cm monoliths g 3466 cm-3 to 91.4 or 152.4 cm tallgrass/mixed prairie no information no information
Prairie and other mesic grasslands Weaver and Darland 1949 Tables 2-4 N Kansas, USA 39:49 N 97:33 W 1100 mm rendzina, silty clay loam total, incl. rhizomes 7.6 × 29.9 cm monoliths g 3466 cm-3 to 91.4 or 152.4 cm tallgrass/mixed prairie no information no information
Prairie and other mesic grasslands Weaver and Darland 1949 Tables 2-4 Central Nebraska, USA 41:22 N 99:35 W 580 mm silt loam total, incl. rhizomes 7.6 × 29.9 cm monoliths g 3466 cm-3 to 91.4 or 152.4 cm tallgrass/mixed prairie no information no information
Prairie and other mesic grasslands Weaver and Darland 1949 Tables 2-4 Central Nebraska, USA 40:42 N 99:06 W 580 mm silt loam total, incl. rhizomes 7.6 × 29.9 cm monoliths g 3466 cm-3 to 91.4 or 152.4 cm tallgrass/mixed prairie no information no information
Prairie and other mesic grasslands Weaver 1977 Table 4 Montana, USA 45:52 N 110:57 W 960 mm sandy loam or loam live, fine < 5 mm 2 cm cores g m-2 to 70 cm Festuca, Agropyron 2330 m June
Prairie and other mesic grasslands Weaver et al. 1935 Tables 3 and 4 E Nebraska, USA 40:53 N 96:42 W 710 mm dark, greyish brown loam total, incl. rhizomes 100 × 100 cm monoliths g m-2 to 122 or 213 cm Andropogon scoparius no information no information
Prairie and other mesic grasslands Weaver et al. 1935 Tables 3 and 4 E Nebraska, USA 40:44 N 95:54 W 865 mm dark, heavy silt loam total, incl. rhizomes 100 × 100 cm monoliths g m-2 to 122 or 213 cm Andropogon furcatus no information no information
Semi-arid steppe Boikov and Kharitonov 1998 Table 2 Buryatia, Russia 51:57 N 106:47 E 435 mm montane Kastanozem total 25 × 25 cm monoliths g m-2 to 50 cm montane steppe, Festuca lenensis, Stipa baicalensis, Filifolium sibiricum no information no information
Semi-arid steppe Coupland and Brayshaw 1953 Table VII Saskatchewan, Canada 52:08 N 106:38 W 360 mm black and dark-brown soils, loam total 7.6 × 30.5 cm monoliths g 232.6 cm-2 to 122 cm mixed prairie, Festuca scabrella, Koeleria, Hesperostipa no information no information
Semi-arid steppe Coupland et al. 1975 Table 3 Saskatchewan, Canada 50:42 N 107:48 W 338 mm lacustrine clay total, live/dead no information g m-2 to 150 cm mixed prairie, Agropyron, Carex, Koeleria 680 m no information
Semi-arid steppe Distel and Fernández 1988 Table 1 La Pampa Province, Argentina 38:45 S 63:45 W 400 mm Typic Paleorthid, medium to heavy texture, petrocalcic horizon at 40 to 60 cm total live Root observation chambers number 100 cm-2 to 60 cm semi-arid grassland, Stipa tenuis, Piptochaetium napostaense no information July to April
Semi-arid steppe Hulbert 1955 Fig. 6 W Idaho, USA 46:27 N 117:01 W 355 mm loam, caliche at 1.2 m total 8 cm cores mg 1000 cm-3 to 160 cm Bromus tectorum and other Bromus species 350 m June
Semi-arid steppe Lee and Lauenroth 1994 Fig. 2 Colorado, USA 40:49 N 104:47 W 321 mm sandy clay loam, and sandy loam total Monolith length (cm) per individual to 110 cm shortgrass steppe, Bouteloua gracilis, Atriplex canescens, Gutierezia sarothrae 1650 m no information
Semi-arid steppe Liang et al. 1989 Fig. 2 Colorado, USA 40:49 N 104:46 W 311 mm sandy loam or clay loam fine < 2 mm 5 cm cores g m-2 to 90 cm shortgrass steppe 1650 m September
Semi-arid steppe Schulze et al. 1996 Table 3 Patagonia, Argentina 44:53 S 71:20 W 290 mm gravelly to rocky sandy loam total, fine, coarse, + rhizomes and bulbs Monolith g m-2 to 200 cm Festuca grassland with Mulinum spinosum shrubs 1160 m March
Semi-arid steppe Shalyt 1950 Tables 23-24 Khomutov, S Ukraine 47:17 N 38:00 E 438 mm Chernozem, clay loam total, fine, coarse, + rhizomes and bulbs 50 × 50 cm monoliths g m-2 to 100 to 240 cm Stipa steppe no information no information
Semi-arid steppe Shalyt 1950 Tables 39ff. Askaniya-Nova, S Ukraine 46:30 N 33:58 E 390 mm solonized soils, solonetz total, fine, coarse, + rhizomes and bulbs 50 × 50 cm monoliths g m-2 to 100 to 240 cm semi-arid steppe no information no information
Semi-arid steppe Shalyt 1950 Tables 64-67 Sivash Bay, S Ukraine 46:07 N 34:12 E 400 mm Kastanozem total, fine, coarse, + rhizomes and bulbs 50 × 50 cm monoliths g m-2 to 100 to 240 cm semi-arid steppe no information no information
Semi-arid steppe Sims and Singh 1978 Table 2 Cottonwood (South Dakota) 43:57 N 101:52 W 400 mm silty clay loam total cores g m-2 to up to 60 cm mixed prairie 744 m no information
Semi-arid steppe Sims and Singh 1978 Table 2 Dickinson (North Dakota) 46:54 N 102:49 W 400 mm loamy fine sand total cores g m-2 to up to 60 cm mixed prairie 784 m no information
Semi-arid steppe Sims and Singh 1978 Table 2 Pantex (Texas) 35:18 N 101:32 W 500 mm silty clay loam total cores g m-2 to up to 60 cm shortgrass steppe 1075 m no information
Semi-arid steppe Sims and Singh 1978 Table 2 Pawnee (Colorado) 40:49 N 104:46 W 300 mm fine sandy loam total cores g m-2 to up to 60 cm shortgrass steppe 1652 m no information
Semi-arid steppe Singh and Coleman 1977 Table 2 Colorado, USA 40:49 N 104:46 W 300 mm fine sandy loam total, live/dead 4.5 cm cores g m-2 to 60 cm shortgrass prairie 1630 m May, July, September
Semi-arid steppe Weaver 1977 Table 4 Montana, USA 45:52 N 111:11 W 360 mm sandy loam or loam live, fine < 5 mm 2 cm cores g m-2 to 70 cm Agropyron, Bouteloua 1360 m June
Temperate shrub/tree savanna or forest steppe Christie 1978 Fig. 6 SW Queensland, Australia 26:24 S 146:16 E 483 mm red earth, sand total 5 cm cores kg ha-1 to 80 or 120 cm native grassland (C3) on former mulga savanna 306 m no information
Temperate shrub/tree savanna or forest steppe Christie 1978 Fig. 6 SW Queensland, Australia 26:10 S 146:16 E 483 mm red earth, sand total 5 cm cores kg ha-1 to 80 or 120 cm sown C4 grassland on former mulga savanna 306 m no information
Temperate shrub/tree savanna or forest steppe Heitschmidt et al. 1988 Fig. 5 Texas, USA 34:09 N 99:17 W 650 mm Typic Paleustoll, clay total > 2 mm Profile wall number to 200 cm Prosopis glandulosa savanna no information Summer
Temperate shrub/tree savanna or forest steppe Johnsen 1962 Table 9 E Arizona, USA 34:22 N 109:23 W 297 mm no information total monoliths g/(1769.8 or 3539.6 cm3) to 61 cm Juniperus monosperma stand and grassland 2000 m no information
Temperate shrub/tree savanna or forest steppe Lavrinenko 1972 Figs. 33, 42, 50, 60, 61, 63, Table 64 Dymer, Ukraine 50:44 N 30:19 E 590 mm forest soil, loamy sand fine < 2 mm 50 × 50 cm monoliths surface area in cm2 or volume in cm3 per depth interval to 110, 150, or 200 cm Pinus sylvestris no information no information
Temperate shrub/tree savanna or forest steppe Lavrinenko 1972 Figs. 33, 42, 50, 60, 61, 63, Table 64 Trostyanets, Ukraine 50:28 N 35:48 E 552 mm acidic loamy soil fine < 2 mm 50 × 50 cm monoliths surface area in cm2 or volume in cm3 per depth interval to 110, 150, or 200 cm Fraxinus, Quercus no information no information
Temperate shrub/tree savanna or forest steppe Lavrinenko 1972 Figs. 33, 42, 50, 60, 61, 63, Table 64 Bila Tserkva, Ukraine 49:48 N 30:07 E 627 mm calcic chernozem, loam fine < 2 mm 50 × 50 cm monoliths surface area in cm2 or volume in cm3 per depth interval to 110, 150, or 200 cm Fraxinus, Quercus no information no information
Temperate shrub/tree savanna or forest steppe Lavrinenko 1972 Figs. 33, 42, 50, 60, 61, 63, Table 64 Boguslav, Ukraine 49:32 N 30:52 E 615 mm acidic forest-steppe soil fine < 2 mm 50 × 50 cm monoliths surface area in cm2 or volume in cm3 per depth interval to 110, 150, or 200 cm Larix decidua, Quercus robur no information no information
Temperate shrub/tree savanna or forest steppe Lavrinenko 1972 Figs. 33, 42, 50, 60, 61, 63, Table 64 Kirovohrad, Ukraine 48:30 N 32:16 E 520 mm chernozem, loam fine < 2 mm 50 × 50 cm monoliths surface area in cm2 or volume in cm3 per depth interval to 110, 150, or 200 cm Fraxinus excelsior, Betula no information no information
Temperate shrub/tree savanna or forest steppe Midwood et al. 1998 Fig. 4 Texas, USA 27:39 N 98:13 W 716 mm sandy loam, with and without argillic horizon total 5 cm cores kg m-2 to 150 cm Prosopis glandulosa groves, shrub-clusters, and grassland 75-90 m no information
Temperate shrub/tree savanna or forest steppe Popov 1979 Table 33 Badkhys State Reserve, S Turkmenistan 35:18 N 62:24 E 289 mm sandy loam to loam total, fine < 1mm 25 × 25 cm monoliths g m-2 to 320 cm Pistacea vera woodland no information no information
Temperate shrub/tree savanna or forest steppe Samoilova 1968 Fig. 1 Voronezh, Ukraine 51:43 N 39:15 E 480 mm alluvial, brown sandy soil total monoliths Mg ha-1 to 200 cm Tilia cordata, and Quercus robur/Tilia stand no information no information
Temperate shrub/tree savanna or forest steppe Usol'tsev and Krepkii 1994 Table 1 Amanqaraghay, Khazakstan 52:25 N 64:03 E 255 mm sod-pine-forest soils, 2-4 m sand over loam or clay, water table at 2.7 m total, 5 diameter classes Root system excavation kg per tree to 260 cm natural Pinus sylvestris forest in the forest step no information no information
Temperate shrub/tree savanna or forest steppe Watts 1993 Table E2 Texas, USA 27:39 N 98:13 W 716 mm sandy loam, with and without argillic horizon total, 4 diameter classes 20 × 20 cm monoliths g m-2 to 200 cm Prosopis glandulosa groves, shrub-clusters, and grassland 75-90 m no information
Temperate shrub/tree savanna or forest steppe Weaver 1977 Table 4 Montana, USA 45:44 N 110:59 W 550 mm loam live < 5 mm 2 cm cores g m-2 to 70 cm Artemisia tridentata 1570 m June
Temperate shrub/tree savanna or forest steppe Weaver 1977 Table 4 Montana, USA 45:48 N 110:48 W 900 mm loam live < 5 mm 2 cm cores g m-2 to 70 cm Festuca idahoensis 1780 m June
Mediterranean shrub- or woodland Carbon et al. 1980 Fig. 2 SW Australia 32:16 S 116:23 E 700 to 1200 mm gravelly sand (~0.9 m) over sandy loam (~3 m) over clay total 5 cm cores root length in cm cm-3 10 1500 (2100) cm Eucalyptus marginata no information no information
Mediterranean shrub- or woodland Davis and Pase 1977 Table 3 Central Arizona, USA 33:35 N 111:16 W 653 mm Udic Ustochrepts, very gravelly sandy loam, weathered granite total Excavation g 0.84 m-3 to 180 cm Quercus turbinella 1006 m no information
Mediterranean shrub- or woodland Higgins et al. 1987 Table 5 Cape Province, South Africa 33:57 S 18:55 E 1700 mm loamy sand, few stones total, 6 diameter classes Hydraulic excavation % root mass to 300 cm Protea, Erica, Leucadendron, Cliffortia, Otholobium 400 m April
Mediterranean shrub- or woodland Kosmas et al. 1996 Fig. 10.5 Greece 37:58 N 23:55 E 496 mm Typic or calcic Xerochrepts, gravelly loam to clay loam total 10 cm cores, sampled discontinuously g m-2 to 120 cm Olea europea trees and annual grasses and forbs 140 m no information
Mediterranean shrub- or woodland Kummerow and Mangan 1981 Table IV California, USA 32:47 N 116:32 W 460 mm sandy and clay loam, 30% stones in upper 0.2 m total, 4 diameter classes Plant excavations and cores g 36 m-2 to 100 cm; fine roots (g 100 cm-3) to 40 cm Cercocarpus, Quercus, Eriogonum, Adenostoma, and Ceanothus 1400 m April-May
Mediterranean shrub- or woodland Kummerow et al. 1990 Fig. 2 Montpelier, France 43:42 N 3:51 E 900 mm rich, loamy soil, 30-50 cm deep, over fractured limestone total, 3 diameter classes Excavation % of total mass to 100 cm Quercus coccifera no information no information
Mediterranean shrub- or woodland Lamont 1973 Table 1 SW Australia 33:57 S 118:29 E 340 mm 8 cm humus, sandy loam Protioid, non-proteoid 28.6 cm cores g 1927.3 cm-3 to 56 cm Hakea shrubs no information no information
Mediterranean shrub- or woodland Lamont 1973 Table 1 SW Australia 31:57 S 115:49 E 820 mm 9 cm humus, sand Protioid, non-protioid 28.6 cm cores g 1927.3 cm-3 to 72 cm Hakea shrubs no information no information
Mediterranean shrub- or woodland Low and Lamont 1990 Table 3 Enaebba, SW Australia 29:52 S 115:15 E 530 mm podzolized sand, acidic Rootstocks, fine < 2 mm, proteoid roots Excavation g m-2 to 180 cm sclerophyllous scrub-heath (kwongan), Banksia attenuata, B. hookeriana no information no information
Mediterranean shrub- or woodland Martínez et al. 1998 Table 1 SW Spain 37:07 N 6:12 W 620 mm Dystric Quaertzipsamment sand dunes fine < 1 mm, coarse > 1 mm 20 cm cores g m-2 to 100 cm Cistus, Halimium, Lavandula, Rosmarinus no information All year
Mediterranean shrub- or woodland Miller and Ng 1977 Table 3 Fundo Santa Laura, Chile 33:04 S 71:00 W 550 mm sandy loam total Hydraulic excavation g m-3 to 100 cm chaparral shrubs 1000 m Summer
Mediterranean shrub- or woodland Miller and Ng 1977 Table 3 California, USA 32:54 N 116:39 W 550 mm sandy loam over weathered granite total Hydraulic excavation g m-3 to 100 cm chaparral shrubs 1000 m Summer
Mediterranean shrub- or woodland Specht and Rayson 1957 Fig. 10 SE Australia 36:02 S 140:24 E 457 mm deep, acidic sand total, incl. dead Excavation kg 3 in-1 acre-1 to 76.2 or 182.9 cm 3 shrub stands, 3-, 9-, and 25-years-old. Xanthorrhea, Leptospermum, Banksia no information End of summer
Mediterranean shrub- or woodland Sternberg et al. 1996 Fig. 1 California, USA 33:53 N 116:45 W 550 mm coarse-loamy, mixed, Typic Xerorthents (to 0.35 m) over weathered granitic bedrock total Profile wall number 100 cm-2 to 200 cm Adenostoma, Arctostaphylos, Ceanothus 1150 m no information
Semi-desert shrublands Barbour et al. 1977 Figs. 9-6 Arizona, USA 32:25 N 111:10 W 290 mm sandy loam total Unknown kg ha-1 to 100 cm Olneya, Cercidium, Ambrosia, 650 m no information
Semi-desert shrublands Bowns and West 1976 Table 4 SW Utah, USA 37:30 N 114:00 W 274 mm sandy loam, caliche layer at 40 cm total Excavation g 3000 cm-3 to 40 cm Coleogyne ramosissima 1280 m no information
Semi-desert shrublands Branson et al. 1976 Fig. 19 Colorado, USA 39:14 N 108:53 W 230 mm Shallow weathered mantle over bedrock, texture fine to coarse total 5 cm cores g 100 cm-3 to 180 cm 11 shrub- and 1 grass-dominated communities no information no information
Semi-desert shrublands Briones et al. 1996 Fig. 3 Coahuila, Mexico 26:00 N 103:00 W 264 mm Yermosol Haplic type, clay loam to 25 cm, clay below total Profile wall number cm-2 to 75 cm Larrea, Hilaria, Opuntia 1100 m April
Semi-desert shrublands Daddy et al. 1988 Fig. 4 New Mexico, USA 36:48 N 107:36 W 200 mm deep, well-drained aridisols, sandy loams total 8 cm cores % of total mass to 100 cm Artemisia tridentata (3 grazing intensities) 1900 m no information
Semi-desert shrublands Dobrowolski et al. 1990 Fig. 7.8 Utah, USA 41:45 N 111:48 W 468 mm rocky Mollisols total Profile wall number m-2 to 250 cm Artemisia tridentata, Agropyron desertorum 1460 m no information
Semi-desert shrublands Fernandez and Caldwell 1975 Table 1 Utah, USA 41:05 N 113:05 W 230 mm lacustrine, saline silty loams total Root observation chambers number m-2 to 60 cm Artemisia, Atriplex, Ceratoides 1350 m May
Semi-desert shrublands Freckman and Virginia 1989 Fig. 1 New Mexico, USA 32:30 N 106:45 W 211 mm Haplargid, Torrifluvent, Torripsamment total 6.5 cm cores Fresh mass, mg/kg of soil to 400 to 1300 cm Larrea tridentata, Prosopis glandulosa no information Spring and Fall
Semi-desert shrublands Hansson et al. 1995 Table 2 Inner Mongolia, China 42:58 N 120:44 E 360 mm sand dunes, partially fixed total 8 cm cores % of total mass to 95 cm degraded shrub vegetation, Artemisia halodendron, A. frigida, Caragana microphylla 350 m July (2 years)
Semi-desert shrublands Kudrjasheva 1974 Table 4 S Tajikistan 37:34 N 68:25 E 158 mm Greyzem total unknown % of total mass per area to 60 cm desert grassland, Carex pachystylis, Poa bulbosa, and forbs 300-500 m no information
Semi-desert shrublands Kul'tiasov 1925 Page 86 Turkistan, S Kazakhstan 41:11 N 68:20 E 230 mm loam total 100 × 100 cm monoliths g m-2 to 75 cm annuals and geophytes, Poa bulbosa, Carex hostii no information no information
Semi-desert shrublands Montaña et al. 1995 Fig. 2 Durango, Mexico 26:40 N 103:40 W 264 mm Haplic Yermosol, sandy clay loam to clay loam total Profile wall number to 70 cm Larrea, Prosopis, Hilaria 1100 m no information
Semi-desert shrublands Moorhead et al. 1989 Fig. 1 New Mexico, USA 32:30 N 106:48 W 215 mm Calciorthid and Typic Haplargid fine (undefined) Soil pit g m-2 to 70 cm Larrea, Gutierrezia, Zinnia, Opuntia no information no information
Semi-desert shrublands Rickard and Vaughan 1988 Table 6.4, Fig. 6.4 Washington, USA 46:32 N 119:31 W 160 mm deep silt-loam total cores g m-2 to 80 cm Artemisia tridentata, Agropyron spicatum, Bromus tectorum 380 m February-March and May-June
Semi-desert shrublands Schulze et al. 1996 Table 3 Patagonia, Argentina 45:24 S 70:18 W 160 mm gravelly sand total Monoliths g m-2 to 300 cm Stipa, Adesmia 700 m March
Semi-desert shrublands Shalyt 1952 Tables 1-6 Central Kazakhstan 47:49 N 66:19 E 200 mm Kastanozem, chernozem, sierozem, and solonetz fine/coarse, rhizomes, bulbs 50 × 50 cm monoliths g m-2 to 90 (100) cm Stipa capillata, S. lessingiana, Agropyron, Artemisia no information no information
Semi-desert shrublands Sturges 1980 Fig. 4 Wyoming, USA 41:20 N 106:48 W 500 mm developed from sandstone, Argic Cryoboroll subgroup total  7.6 cm cores g 680 cm-3 to 122 cm Artemisia tridentata, Festuca idahoensis, Poa spp., Stipa spp. 2225 m September
Desert Fernández and Paruelo 1988 Fig. 5 Chubut, Argentina 45:25 S 70:20 W 142 mm Calciorthid with high gravel content total Excavation length in cm per plant to 120 cm Mulinum and Senecio 500 m no information
Desert Groeneveld 1989 Tables 3 and 4 E California, USA 37:25 N 118:21 W, 37:10 N 118:17 W 144 mm sandy loam and loamy sand total 7.6 cm cores length in m 100 cm-3 to 180 or 270 cm Atriplex torreyi, Sporobolus airoides no information no information
Desert Jordan and Nobel 1984 Fig. 1 California, USA 33:38 N 116:24 W 150 mm Gravely, sandy loam total Monoliths length (?m mm-3) to 15 cm Agave deserti, Ferocactus acanthodes 850 m September
Desert Manning and Barbour 1988 Table 4 California, USA 37:12 N 118:22 W 144 mm Sandy loam, granitic  total 250 cm3 samples, sampled discontinuously g per 250 cm-3 soil to 100 cm Chrysothamnus teretifolius, Ericameria cooperi about 1300 m September
Desert Miroshnichenko 1975 Table 3 E Karakum, Turkmenistan 38:35 N 63:11 E 114 mm sand total, 8 diameter classes 50 × 80 cm monoliths kg ha-1 to 600 cm Haloxylon aphyllum-Carex physodes community 185 m no information
Desert Nobel 1989 Fig. 1 California, USA 33:38 N 116:24 W 150 mm gravely, sandy loam total Excavation length (% of total) to 30 cm Agave deserti, Ferocactus acanthodes, Hilaria rigida 850 m no information
Desert Nobel et al. 1991 Table 2 California, USA 33:38 N 116:24 W 150 mm gravely, sandy loam total Excavation length (% of total) to 30 cm Echincereus engelmannii, Opuntia acanthocarpa 850 m no information
Desert Rodin 1977 Table 1 Central Kazakhstan 47:05 N 61:09 E 120 mm Burozem total Unknown t ha-1 to 200 cm Artemisia terrae-albae community 78 m no information
Desert Schreiber et al. 1995 Fig. 7 Negev Desert, Israel 30:51 N 34:45 E 100 mm colluvial soil with caliche total Monoliths % of total mass to 60 cm Artemisia herba-alba, Zygophyllum dumosum, Stipa capensis no information no information
Desert Schulze et al. 1996 Table 3 Patagonia, Argentina 45:27 S 69:50 W 125 mm clay over caliche, sandy loam and sand below total Monoliths g m-2 to 300 cm Nassauvia glomerulosa, Poa ligularis 540 m March
Desert Sveshnikova 1968 Table on p. 211 E Pamir Mountain Desert, Tajikistan 38:09 N 73:56 E 120 mm gray-brown type, loamy and rocky total  excavation g m-2 to 50 cm Artemisia rhodantha, Eurotia, Acantholimon, Carex 3864 m no information
Desert Wallace et al. 1980 Table 1 Nevada, USA 36:40 N 116:07 W 100 mm loamy sand total, 2 diameter classes whole plant excavation and 1 l soil samples % of total mass per plant to 60 cm 9 shrub species, incl. Larrea tridentata, Ambrosia dumosa, Lycium, + annuals no information April and September
Desert Zhang Kebin 1989 Fig. 1 Gansu Province, China 38:42 N 103:10 E 127 mm shifting sands fine < 5 mm unknown % of total to 200 cm, (no units given) Haloxylon ammodendron no information no information
Desert Zverev and Seiidova 1990 Tables 1-5 Karakum, Turkmenistan 38:29 N 57:43 E 148 mm sand dunes total, 3 diameter classes Excavation mass (g/shrub) to 150 to 400 cm Calligonum, Salsola, Aellenia, Astragalus, Mausolea 90 m no information
Dry tropical savanna Belsky 1994 Fig. 1 Tsavo National Park, Kenya 3:25 S 37:55 E 450 mm rhodic ferrasol fine < 2 mm, coarse > 2 mm Profile wall number 100 cm-2 to 100-120 cm Acacia tortilis savanna, with Cynodon nlemfuensis, Panicum maximum 450 m no information
Dry tropical savanna Belsky 1994 Fig. 1 Tsavo National Park, Kenya 2:45 S 38:08 E 767 mm ferral-chromic Luvisols and orthic Acrisols fine < 2 mm, coarse > 2 mm Profile wall number 100 cm-2 to 100-120 cm Acacia tortilis savanna, with Cynodon nlemfuensis, Panicum maximum 767 m no information
Dry tropical savanna Bille 1977 Pages 46 and 53 Sahel, Senegal 16:13 N 15:06 W 316 mm Ferrugineous soil, sand to sandy loam total 1 kg soil samples from profile wall g m-2 to 600 cm (woody plants) or 200 cm (herbs) Adansonia, Balanites, Acacia, Commiphora, Guiera, Grewia 40 m no information
Dry tropical savanna Blagoveshchenskiy 1968 Fig. 6 NW India 26:16 N 72:58 E 355 mm sand to loamy sand, petrocalcic horizon at 200 cm total (grass only) excavation and 501 cm3 samples g 1000 cm-3 to 90 cm mesquite savanna, Prosopis spicigera no information no information
Dry tropical savanna Coughenour et al. 1990 Fig. 3 S Turkana, Kenya 2:12 N 35:45 E 150 to 800 mm sandy to gravelly loam total > 1 to 2 mm Excavation root length in m per tree to 300 cm Acacia tortilis, A. reficiens no information no information
Dry tropical savanna Gaze et al. 1998 Fig. 2 Sahel, Niger 13:15 N 2:15 E 585 mm Psammentic Paleustalf, sand total 4.9 cm cores length in cm m-3 to 230 cm Guiera senegalensis shrubs, grasses, and herbs no information June
Dry tropical savanna Groot et al. 1995 Appendix 1 Zinzana, S Mali 13:10 N 5:55 E 700 mm ferrugineous soil, loamy sand fine < 2 mm, coarse > 2 mm 10 × 10 cm monoliths along transects' kg ha-1 to 120 or 180 cm Andropogon gayanus 280 m September to
Dry tropical savanna Groot et al. 1995 Appendix 1 N'Tarla, S Mali 12:35 N 5:42 E 900 mm ferrugineous soil, loamy sand fine < 2 mm, coarse > 2 mm 10 × 10 cm monoliths along transects' kg ha-1 to 120 or 180 cm Andropogon gayanus 310 m October
Dry tropical savanna Hosegood 1963 Fig. 1 Kenya 1:11 S 36:38 E 967 mm red loam total monoliths volume of roots in in3 ft-3 Acacia molissima, Pennisetum clandestinum 2100 - 2300 m no information
Dry tropical savanna Kellman and Sanmugadas 1985 Fig. 1 Augustine, Belize 17:00 N 89:00 W 500 mm intensely weathered ultisols, gravelly sandy loam over gravelly clay at 30 to 75 cm fine < 2 mm 6 cm cores g m-2 to 60 cm pine savanna, Pinus caribaea, Quercus oledoides 500 m no information
Dry tropical savanna Knoop and Walker 1985 Fig. 1 Northern Province, South Africa 24:39 S 28:42 E 630 mm sand to loamy sand Woody/herbaceous Profile wall number m-2 to 100 or 120 cm Burkea africana, Ochna pulchra, Acacia tortilis, A. nilotica and grasses 1100 m no information
Dry tropical savanna McNaughton et al. 1998 Fig. 3 Serengeti National Park, Tanzania 2:20 S 34:57 E 700 to 900 mm sandy loam to clay loam total live 5 cm cores g m-2 to 50 cm mid-grass no information beginning of dry season
Dry tropical savanna McNaughton et al. 1998 Fig. 3 Serengeti National Park, Tanzania 2:44 S 35:10 E 350 to 500 mm sandy clay loam to clay loam total live 5 cm cores g m-2 to 50 cm short-grass no information beginning of dry season
Dry tropical savanna Okali et al. 1973 Fig. 5 Accra Plains, Ghana 5:42 N 0:07 W 750 mm dark sandy loam or sandy clay loam over gravel and yellow sandy clay total, 3 diameter classes 25 × 25 cm monoliths g 625 cm-2 to 120 cm thicket clump surrounded by grassland 30 m no information
Dry tropical savanna Scholes and Walker 1993 Fig. 14.3 Northern Province, South Africa 24:39 S 28:42 E 630 mm sand to loamy sand fine (not defined), woody/grass 0.5 m2 soil profiles length (m m-3) to 100 cm Eragrostis, Burkea, Terminalia 1100 m no information
Dry tropical savanna Singh 1994 Fig. 3 and Table 4 NW India 29:10 N 75:46 E 550 mm sandy loam fine < 2 mm, coarse > 2 mm 5 cm cores and excavation fine roots in Mg ha-1 to 120 cm, coarse roots to 210 cm 9-year-old legume trees, Prosopis cineraria, Albizia lebbek, Dalbergia sissoo 215 m September
Dry tropical savanna Smit and Rethman 1998 Table 2 South Africa 25:33 S 27:41 E 376 mm loamy sand over sandy clay loam total, 4 diameter classes 2.0 × 0.5 × 1.0 m monoliths kg ha-1 to 100 cm Colophospermum mopane no information December to February
Dry tropical savanna Soumaré et al. 1994 Table 5 Mali 14:30 N 5:45 E 580 mm loamy sand Woody/herbaceous 1.1 × 0.1 × 0.6 m monoliths kg ha-1 to 60 cm Acacia seyal, Sclerocarya birrea, and grasses no information no information
Dry tropical savanna Toky and Bisht 1992 Fig. 15 NW India 29:10 N 75:46 E 550 mm sandy loam total excavation number of roots and % of total biomass to 230 cm 9 indigenous and 3 exotic tree species, 6-years-old 215 m no information
Dry tropical savanna Vandenbeldt 1991 Fig. 4 SW Niger 13:05 N 2:06 E 562 mm Psammentic Paleustalf, 3 to 4 m deep over a gravelly, lateritic layer total > 2 mm excavation g per tree to 350 cm Faidherbia albida trees, 8- to 9-months-old from two seed sources no information no information
Humid tropical savanna de Castro and Kauffman 1998 Fig. 1 Goiás, Brazil 16:06 S 47:54 W 1482 mm Campo sujo and Cerrado: Latosols and podzolic soils; Campo limpo: lithosols total 50 × 50 cm monoliths and 15 cm cores Mg ha-1 to 200 cm campo limpo (grassland), campo sujo (savanna), cerrado aberto and denso  1100 m August to November
Humid tropical savanna Devidas and Puyravaud 1995 Table II S India 11:47 N 76:23 E 1098 mm fersiallitic to ferallitic soils, with coarse fragments total (herbaceous only) 20 × 20 cm monoliths g m-2 to 50 cm tropical savanna 900 m January to December
Humid tropical savanna Fiala and Herrera 1988 Tables 1 and 4 Cuba 22:15 N 80:41 W 1000-1500 mm fine deep siliceous total, live/dead 10 × 10 cm monoliths % of total mass to 50 cm Byrsonimo-Andropogonetum 25 m no information
Humid tropical savanna Fiala and Herrera 1988 Tables 1 and 4 Cuba 21:38 N 82:59 W 1165-1795 mm gleyed coarse sands total, live/dead 10 × 10 cm monoliths % of total mass to 50 cm Phyllantho-Aristidetum 2 m no information
Humid tropical savanna Fiala and Herrera 1988 Tables 1 and 4 Cuba 22:53 N 82:53 W 2013 mm fine sandy loam total, live/dead 10 × 10 cm monoliths % of total mass to 50 cm Axonopus compressus 150 m no information
Humid tropical savanna Friesen et al. 1997 Fig. 1 E Colombia 4:30 N 71:19 W 2240 mm well-drained silty clay, Oxisols total cores length in km m-2 to 80 cm Andropogon, Trachypogon 150 m November
Humid tropical savanna Kellman and Roulet 1990 Fig. 1 Veracruz, Mexico 19:30 N 96:30 W 1300 mm sand dunes of different ages fine < 2 mm 6 cm cores g m-2 to 200 cm 2 stages of dune succession, Andropogon, Diphysia/Acacia matorral <10 m no information
Humid tropical savanna Lawson et al. 1968 Fig. 17 Mole Game Reserve, Ghana 9:23 N 1:59 W 1070 mm colluvial, sandy loam to 40 cm, loam to clay loam below total, 4 diameter classes 26 × 25 × 70 cm monoliths g 10,000 cm-3 to 70 cm Burkea, Monotes, Terminalia, Isoberlinia, Crossopteryx, Erythrophleum 165 m no information
Humid tropical savanna Le Roux et al. 1995 Fig. 1 Lamto Reserve, Cote D'Ivoire 6:13 N 5:02 W 1210 mm sandy, tropical ferrugineous soils fine < 2 mm 4.4-cm diameter cores g m-3 to 180 cm Cussonia, Crossopteryx, Hyparrhenia, Andropogon no information July
Humid tropical savanna McNaughton et al. 1998 Fig. 3 Serengeti National Park, Tanzania 1:34 S 34:50 E 1000 to 1200 mm sandy loam total live 5 cm cores g m-2 to 50 cm tall grass no information beginning of dry season
Humid tropical savanna Mekonnen et al. 1997 Fig. 1 W Kenya 0:06 N 34:34 E 1800 mm very fine, kaolinitic, isohyperthermic Kandiudalfic Eutrudox total 15 × 15 × 10 cm cores g m-2 and length (cm cm-3) to 220 cm natural weed fallow (13 months old), Ageratum, Dichondra, Guizotia, Digitaria, Paspalum, Hibiscus 1420 m September
Humid tropical savanna Mordelet et al. 1997 Figs. 1-4 Lamto Reserve, Cote D'Ivoire 6:13 N 5:02 W 1210 mm sandy, with gravel, tropical ferrugineous soil fine < 2 mm, coarse > 2 mm 20 × 20 × 10 cm cores g m-3 to 120 cm Bridelia, Crossopteryx, Hyparrhenia, Andropogon no information Whole year
Humid tropical savanna Pandey and Singh 1992 Fig. 5, Table 1 Uttar-Pradesh, India 24:11 N 83:01 E 1145 mm residual ultisols, sandy loam total 15 × 15 cm monoliths % biomass to 50 cm dry savanna, degraded dry deciduous forest, Acacia, Lagerstroemia, Anogeissus ~400 m Various
Humid tropical savanna Rao 1998 Fig. 3 E Colombia 4:37 N 71:19 W 2200 mm clay loam Oxisol total 5 cm cores mass (Mg ha-1), length (km m-2 ) to 80 cm Andropogon, Trachypogon 150 m no information
Tropical (semi)deciduous forest Bang-xing 1991 Table 4 Yunnan, China 21:44 N 100:40 E 1515-1606 mm no information fine No information g cm-2 to 150 cm seasonal rainforest 650 m no information
Tropical (semi)deciduous forest Castellanos et al. 1991 Fig. 1 Chamela, Mexico 19:30 N 105:05 W 707 mm deep sandy loam, with hardpan at 60 to 80 cm total, 4 diameter classes 0.5 m × 2 m soil pits and 4.2 cm cores kg m-2 to 80 cm Bursera excelsa, Caesalpinia eriostachys, Jatropha stanleyi no information April-May
Tropical (semi)deciduous forest Cavelier 1992 Fig. 2 Gigante Peninsula, Panama 9:07 N 80:09 W 2567 mm Oxisol, sandy clay loam to clay total, 3 diameter classes 5.6 cm cores Mg ha-1 to 25 cm semi-deciduous lowland forest 60 m February to October
Tropical (semi)deciduous forest Greenland and Kowal 1960 Table 8 Kade, Ghana 6:09 N 0:55 W 1650 mm reddish yellow Latosols, silty clay over sandy clay total 4 cm cores lbs acre-1 to 150 cm moist semi-deciduous forest, Diospyros, Strombosia 167 m no information
Tropical (semi)deciduous forest Jama et al. 1998 Table 4 W Kenya 0:06 N 34:34 E 1800 mm very fine, kaolinitic, isohyperthermic, Kandiudalfic Eutrudox total 15 × 15 × 400 cm monoliths km m-2 to 395 cm 5 exotic tree species, 11-months-old 1430 m February to March
Tropical (semi)deciduous forest Kellman and Roulet 1990 Fig. 1 Veracruz, Mexico 19:30 N 96:30 W 1300 mm dune sand, fossil dune with caliche layer at 1.4 m fine < 2 mm 6 cm cores g m-2 to 140 or 200 cm low, semi-deciduous forest, young: Enterolobium, Cedrela; old: Bursera, Brosimum < 10 m no information
Tropical (semi)deciduous forest Lawson et al. 1970 Fig. 14 Kade, Ghana 6:09 N 0:55 W 1650 mm reddish yellow Latosols, silty clay over sandy clay total, 4 diameter classes 25 × 25 × 50 cm monoliths g 10,000 cm-3 to 50 cm moist semi-deciduous forest, Celtis mildbraedii 167 m no information
Tropical (semi)deciduous forest Mensah and Jenik 1968 Figs 4,5,6 Esukawkaw, Ghana 6:20 N 0:45 W 1231 mm lateritic gravel, coarse total, 4 diameter classes 25 × 25 × 50 cm monoliths g 6250 cm-3 to 50 cm moist semi-deciduous forest, Chlorophora excelsa no information no information
Tropical (semi)deciduous forest Mensah and Jenik 1968 Figs 4,5,6 Kade, Ghana 6:10 N 0:55 W 1650 mm reddish yellow Latosols total, 4 diameter classes 25 × 25 × 50 cm monoliths g 6250 cm-3 to 50 cm moist semi-deciduous forest, Chlorophora excelsa 167 m no information
Tropical (semi)deciduous forest Murphy et al. 1995 Fig. 7.3 SW Puerto Rico 17:58 N 66:53 W 860 mm limestone based Mollisols, clay loam, 15 to 18 cm over weathered limestone total 10 × 10 × 100 cm monoliths % of total to 100 cm and total root biomass in Mg ha-1 dry semi-deciduous forest, Gymnathes lucida, Exostema caribaeum, Pisonia albida 175 m March
Tropical (semi)deciduous forest Schroth et al. 1996 Fig. 1 Cote D'Ivoire 6:17 N 5:13 W 1285 mm Ferralic Cambisol, sandy clay to sandy clay loam, hardened below 60 cm fine < 1 mm 8 cm cores kg carbon ha-1 to 60 cm nine exotic tree species, 5-years-old, and natural Chromolaena fallow 200 m no information
Tropical (semi)deciduous forest Srivastava et al. 1986 Table 3 and 4 Uttar Pradesh, India 24:52 N 83:03 E 992 mm reddish brown sandy loam fine < 8 mm, 4 diameter classes 15 × 15 cm monoliths g m-2 to 40 cm teak plantation, 19-years-old, Tectona grandis no information Monthly
Tropical evergreen forest Berish and Ewel 1988 Fig. 2 Florencia Norte Forest, Costa Rica 9:54 N 83:40 W 2700 mm Typic Dystrandept (Andept Inceptisol), sandy clay fine < 5 mm, 3 diameter classes 4.2 cm cores, 25 × 25 cm monoliths g m-2 , fine root surface area (cm m-2 ) to 85 cm early successional forest, 4 to 60 months old 650 m no information
Tropical evergreen forest Berish 1982 Table 1 Florencia Norte Forest, Costa Rica 9:53 N 83:40 W 2700 mm Typic Dystrandept (Andept Inceptisol), sandy clay total, 6 diameter classes 4.2 cm cores, 25 × 25 cm monoliths g m-2 , fine root surface area (cm m-2 ) to 85 cm successional growth, 1- and 8-months old, and secondary Goethalsia meiantha forest 650 m March
Tropical evergreen forest Cavelier 1992 Fig. 2 Cordillera Central, Panama 8:43 N 82:14 W 3900 mm Inceptisol, sandy loam to loamy sand total < 50 mm, 4 diameter classes 5.6 cm cores Mg ha-1 to 25 cm lower montane rain forest 1200 m February to October
Tropical evergreen forest Cerri and Volkoff 1987 Table IV Manaus, Brazil 2:35 S 60:02 W 2100 mm uniform yellow latosol, deep acidic clay total 10 cm cores g carbon m-2 to 500 cm primary Amazon rain forest no information April
Tropical evergreen forest Davies and Becker 1996 Fig. 3 Brunei Darussalam, Borneo 4:34 N 114:25 E 3000 mm sandy haplic acrisol fine < 2 mm, coarse > 2 mm 10 × 10 × 20 cm monoliths length (m m-3) and mass (kg m-3) to 100 cm tropical heath forest 11--16 m July
Tropical evergreen forest Davies and Becker 1996 Fig. 3 Brunei Darussalam, Borneo 4:39 N 114:31 E 3000 mm sandy albic arenosol fine < 2 mm, coarse > 2 mm 10 × 10 × 20 cm monoliths length (m m-3) and mass (kg m-3) to 100 cm mixed dipterocarp forest 37--59 m July
Tropical evergreen forest Gower 1987 Table 1 La Selva, Costa Rica 10:26 N 83:59 W 3800 mm Fluvaquentic Hapludoll (River site) and Oxic Dystrandept (Arboleda site)  total, live, in 4 diameter classes 7 cm cores g m-2 to 50 cm tropical evergreen forest 60 m March
Tropical evergreen forest Greenland and Kowal 1960 Table 8 Yangambi, Democratic Republic of the Congo 0:45 N 24:26 E 1758 mm Latosols total monoliths lbs acre-1 to 152.4 cm 8-year old successional Musanga cecropioides forest no information no information
Tropical evergreen forest Huttel 1975 Fig. 10-3 Banco, Cote D'Ivoire 5:24 N 4:03 W 2100 mm sand to loamy sand total, 4 diameter classes cores, excavation g 100 cm-3 to 130 or 250 cm Strombosia, Coula, Turreanthus, Dacryodes no information no information
Tropical evergreen forest Huttel 1975 Fig. 10-3 Yapo, Cote D'Ivoire 5:48 N 4:08 W 1800 mm gravelly clay loam total, 4 diameter classes cores, excavation g 100 cm-3 to 130 or 250 cm Diospyros, Mapania no information no information
Tropical evergreen forest Klinge 1973 Tables 1,4 Central Amazonia, Brazil 2:46 S 59:49 W 2070 mm pale yellow latosol, loamy; humus podzol, sandy total < 50 mm, 7 diameter classes 25 × 25 cm monoliths kg ha-1 and length to 89 or 107 cm terra firme forest and campina (heath) forest no information no information
Tropical evergreen forest Klinge 1975 Table 1 Central Amazonia, Brazil 2:46 S 59:49 W 2070 mm humus podzol, sandy, with thick humic sand layer total < 50 mm, 7 diameter classes 25 × 25 cm monoliths kg ha-1 and length to 90 cm campina (heath) forest no information no information
Tropical evergreen forest Nepstad et al. 1994 Fig. 2 Para, Brazil 2:59 S 47:31 W 1750 mm kaolinitic Yellow Latosol fine < 1 mm cores taken from profile wall, sampled discontinuously mg cm-3 to 600 cm seasonal tropical forest no information no information
Tropical evergreen forest Nepstad et al. 1994 Fig. 2 Para, Brazil 2:59 S 47:31 W 1750 mm deeply weathered clay soils fine < 1 mm cores taken from profile wall, sampled discontinuously mg cm-3 to 600 cm managed and degraded pasture no information no information
Tropical evergreen forest Odum 1970 Fig. 25 Barro Colorado Island, Panama 9:09 N 79:51 W 2564 mm well-drained clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lowland, seasonal forest 60 m April
Tropical evergreen forest Odum 1970 Fig. 25 Fort Clayton, Panama 9:00 N 79:35 W 1830 mm well-drained clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm seasonal lowland forest 60 m April
Tropical evergreen forest Odum 1970 Figs. 25 and 27 Boca Lara, Darien, Panama 8:39 N 78:08 W 2160 mm well-drained clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm cuipo and successional forest 20 and 60 m April
Tropical evergreen forest Odum 1970 Fig. 25 San Lorenzo, Panama 8:19 N 82:04 W 2500 mm well-drained pale clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm hill forest 30 m August
Tropical evergreen forest Odum 1970 Fig. 29 Cerro Jefe, Panama 9:12 N 79:23 W 4000 mm red brown soil and yellow clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lower montane forest 600 m April
Tropical evergreen forest Odum 1970 Fig. 25 Belem, Brazil 1:26 S 48:29 W 2830 mm clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm tierra-firma forest 8 m June
Tropical evergreen forest Odum 1970 Fig. 28 Manaus, Brazil 2:35 S 60:02 W 2100 mm sand total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lowland forest 50 m June
Tropical evergreen forest Odum 1970 Fig. 25 Cupcake Hills, Puerto Rico no information no information well-drained clay, limestone total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lowland forest on limestone 90 m May
Tropical evergreen forest Odum 1970 Fig. 30 El Verde, Puerto Rico 18:21 N 65:49 W 3000-3500 mm black clay over yellow clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lower montane Tabonuco forest 150 and 250 m September
Tropical evergreen forest Odum 1970 Figs. 31-34 El Verde, Puerto Rico 18:19 N 65:49 W 3800-4200 mm black clay over yellow clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm montane Tabonuco forest 375-459 m September/October
Tropical evergreen forest Odum 1970 Fig. 25 Sarapiqui, Costa Rica 10:28 N 84:01 W 3800 mm well-drained pale clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm flatland Ceiba and hill forest 16 m August
Tropical evergreen forest Odum 1970 Fig. 29 Morne Bleu, Trinidad 10:43 N 61:18 W 2400 mm red decomposing slate total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lower montane ridge forest 450 m August
Tropical evergreen forest Odum 1970 Fig. 29 Pagayer Hills, Dominica 15:26 N 61:20 W 6350 mm andesitic clay, on slate total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lower montane, virgin Sloanea forest 500 m August
Tropical evergreen forest Odum 1970 Fig. 29 Palmquist Ridge, Dominica 15:31 N 61:21 W 3800 mm yellow clay, water at 40 cm total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lower montane, virgin Tabonuco forest 240 m August
Tropical evergreen forest Odum 1970 Fig. 29 Dleau Gommier, Dominica 15:25 N 61:21 W 6350 mm yellow-brown clay total Profile wall number per cm2 of vertical profile wall to 40 (to 165) cm lower montane, virgin forest 450 m August
Tropical evergreen forest Raich 1983 Table 3 La Selva, Costa Rica 10:26 N 83:50 W 3980 mm Typic Hydrandept, clay fine <5 mm, 2 diameter classes 10 × 10 cm monoliths g m-2 to 50 cm mature evergreen forest and secondary succession 40-110 m no information
Tropical evergreen forest Sanford 1989 Table 2 S Venezuela 1:56 N 67:03 W >3500 mm sandy Spodosols, with thick raw humus; oxisols under tierra firme total, 9 diameter classes 25 × 25 cm monoliths kg m-2 to 50 cm old-growth forest (3 types), tierra firme, caatinga, and bana 119 m no information
Tropical evergreen forest Sternberg et al. 1998 Fig. 3 Para, Brazil 2:59 S 47:31 W 1750 mm kaolinitic yellow Latosol total 2500 cm3 samples from profile wall, sampled discontinuously mg 1000 cm-3 to 400 cm seasonal tropical forest no information no information
Tropical evergreen forest Thompson et al. 1992 Table 6 Roraima, Brazil 3:20 N 61:20 W 2300 mm Grossarenic Plinthic Paleudult, loamy sand over sandy loam/sandy clay loam total < 50 mm, 4 diameter classes 0.5 m3 soil pits Mg ha-1 to 100 cm lowland, evergreen rain forest no information no information
Alpine Kaletkina 1974 Fig. 4 W Tajikistan 39:10 N 68:49 E 494 mm no information total Monoliths % of total mass to 60 or 80 cm subalpine and alpine meadows 3373 m Summer
Alpine Ladygina and Litvinova 1974 Table 5 E Pamirs, Tajikistan 38:09 N 73:57 E 130 - 250 mm no information total 50 × 50 cm monoliths g m-2 to 100 cm alpine floodplain tundra, Kobresia capilliformis, Carex pseudo-foetida, C. orbicularis 3900 - 4350 m Summer
Alpine Rosswall et al. 1975 Table 7 N Sweden 68:22 N 19:03 E 300 mm peat total no information % of total mass to 55 cm (permafrost) Andromeda, Betula, Empetrum, Vaccinium, Carex, Eriophorum, subalpine tundra 351 m no information
Alpine Webber and May 1977 Fig. 3 Colorado, USA 40:03 N 105:36 W 993 mm coarse with thin organic-rich surface horizons, often with loess fraction live/dead 5 × 5 cm monoliths g m-2 to 90 cm alpine tundra, six vegetation types 3650 m August
Tropical cloud forest Odum 1970 Fig. 35 Serranía del Darien, Panama 9:05 N 78:10 W 2500 mm well-drained clay total Profile wall number cm-2 to 35 to 60 cm short cloud forest 275 m April
Tropical cloud forest Odum 1970 Fig. 35 Cerro Jefe, Panama 9:12 N 79:23 W 4000 mm red brown soil and yellow clay total Profile wall number cm-2 to 35 to 60 cm short and mossy cloud forest 840 and 1050 m April
Tropical cloud forest Odum 1970 Fig. 22 East Peak, Puerto Rico 18:16 N 65:45 W 4000 mm yellow clay over red clay total Profile wall number cm-2 to 35 to 60 cm elfin cloud forest 1034 m October
Tropical cloud forest Odum 1970 Fig. 35 El Yunque, Puerto Rico 18:18 N 66:47 W 4000 mm black clay over yellow clay total Profile wall number cm-2 to 35 to 60 cm elfin cloud forest 960 m September
Tropical cloud forest Odum 1970 Fig. 35 Maricao, Puerto Rico 18:09 N 66:58 W 2520 mm red serpentine soil total Profile wall number cm-2 to 35 to 60 cm short cloud forest 890 m July
Tropical cloud forest Odum 1970 Fig. 35 Cuevas Mountains, Trinidad 10:44 N 61:22 W 2400 mm yellow clay total Profile wall number cm-2 to 35 to 60 cm ridge forest near cloud level 500 m June
Tropical cloud forest Vance and Nadkarni 1992 Tables 3 and 5 Monteverde, Costa Rica 10:18 N 84:48 W 2000 mm Typic Dystrandept, humus 0.15 m, loam to 0.85 m, clay loam to 1.80 m total, 4 diameter classes 10 cm cores, 1 m2 excavated pits g m-2 to 180 cm Monteverde cloud forest 1550 m no information

   Notes: This table contains a list of studies containing data for vertical root profiles from global terrestrial ecosystems (excluding wetlands).  Studies are arranged by biome (or global vegetation types), and within biomes by author.  Note that some studies were done in anthropogenic vegetation that differed from the one that is typical for the biome (e.g., pastures in forest biomes, forest plantations in prairie biome).  References are listed below the table.  All information compiled in this table was obtained from the cited references, except for some estimates for mean annual precipitation and geographic corrdinates, which were not always included in the references.  If not given in the references, geographic coordinates were estimated based on geographic information in the publications.  The precision of these estimates varies from a few kilometers in the majority of cases to no more than 0.5° latitude or longitude in a few cases (mostly for sites in unpopulated areas in boreal or tropical zones).  Where information on mean annual precipitation was not given in the paper, it was estimated from the nearest available weather station.

Literature Cited

Abaimov, A. P., S. G. Prokushkin, O. A. Zyryanova, and L. N. Kaverzina. 1997. Osobennosti formirovanija i fynkcionirovanija listvennichnykh lesov na merzlotnykh pochvakh. (Peculiarities of forming and functioning larch forests on frozen soils. In Russian). Lesovedenie 1997(5):13-23.

Aerts, R. 1993. Biomass and nutrient dynamics of dominant plant species from heathlands. Pages 51-84 in R. Aerts, and G. W. Heil, editors. Heathlands: patterns and processes in a changing environment. Kluwer, Dordrecht, The Netherlands.

Ares, A., and N. Peinemann. 1992. Fine-root distribution of coniferous plantations in relation to site in southern Buenos Aires, Argentina. Canadian Journal of Forest Research 22:1575-1582.

Bang-xing, W. 1991. Studies on the vertical structure of seasonal rain-forest in Xishuangbanna of Yunnan. Acta Botanica Sinica 33:232-239.

Barbour, M. G., J. A. MacMahon, S. A. Bamberg, and J. A. Ludwig. 1977. The structure and distribution of Larrea communities. Pages 227-251 in T. J. Mabry, J. H. Hunziker, and D. R. DiFeo, Jr., editors. Creosote bush: biology and chemistry of Larrea in New World deserts. US/IBP Series 6. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, USA.

Barker, D. J., D. M. Zhang, and A. D. Mackay. 1988. Root distribution in a low fertility hill county sward grazed by sheep. New Zealand Journal of Experimental Agriculture 16:73-76.

Belsky, A. J. 1994. Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75:932.

Berish, C. W. 1982. Root biomass and surface area in three successional tropical forests. Canadian Journal of Forest Research 12:699-704.

Berish, C. W., and J. J. Ewel. 1988. Root development in simple and complex tropical successional ecosystems. Plant and Soil 106:73-84.

Bhatti, J. S., N. W. Foster, and P. W. Hazlett. 1998. Fine root biomass and nutrient content in a black spruce peat soil with and without alder. Canadian Journal of Soil Science 78:163-169.

Bille, J. C. 1977. Étude de la production primaire nette d'un écosystème Sahélien. Travaux et Documents de l'O.R.S.T.O.M. 65. O.R.S.T.O.M., Paris, France.

Blagoveshchenskiy, E. N. 1968. The dry savanna of northwest India. Soviet Geography 9:519-537.

Boikov, T. G., and Y. D. Kharitonov. 1998. Biomass of underground organs in Transbaikalian steppe phytocenoses. Pages 55-60 in J. E. Box, Jr., editor. Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Developments in Plant and Soil Sciences 82. Kluwer, Dordrecht, The Netherlands.

Bowns, J. E., and N. E. West. 1976. Blackbrush (Coleogyne ramosissima Torr.) on southwestern Utah rangelands. Research Report 27. Utah Agricultural Experiment Station, Logan, Utah, USA.

Branson, F. A., R. F. Miller, and I. S. McQueen. 1976. Moisture relationships in twelve northern desert shrub communities near Grand Junction, Colorado. Ecology 57:1104-1124.

Briones, O., C. Montaña, and E. Ezcurra. 1996. Competition between three Chihuahuan desert species: evidence from plant size-distance relations and root distribution. Journal of Vegetation Science 7:453-460.

Carbon, B. A., G. A. Bartle, A. M. Murray, and D. K. MacPherson. 1980. The distribution of root length, and the limits to flow of soil water to roots in a dry sclerophyll forest. Forest Science 26:656-664.

Castellanos, J., M. Maass, and J. Kummerow. 1991. Root biomass of a dry deciduous tropical forest in Mexico. Plant and Soil 131:225-228.

Cavelier, J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant and Soil 142:187-201.

Cerri, C. C., and B. Volkoff. 1987. Carbon content in a yellow Latosol of central Amazon rain forest. Acta Oecologica. Oecologia Generalis 8:29-42.

Chapman, S. B. 1970. The nutrient content of the soil and root system of a dry heath ecosystem. Journal of Ecology 58:445-452.

Chen, Z., H. Chang, and B. Wang. 1994. Studies on biomass and production of the lower subtropical evergreen broad-leaved forest in Heishiding nature reserve, China. VI. Distribution, biomass and production of roots. Journal of Tropical Ecology 10:273-279.

Christie, E. K. 1978. Ecosystem processes in semiarid grasslands. I Primary production and water use of two communities possessing different photosynthetic pathways. Australian Journal of Agricultural Research 29:773-787.

Coughenour, M. B., J. E. Ellis, and R. G. Popp. 1990. Morphometric relationships and developmental patterns of Acacia tortilis and Acacia reficiens in Southern Turkana, Kenya. Bulletin of the Torrey Botanical Club 117:8-17.

Coupland, R. T., and T. C. Brayshaw. 1953. The fescue grassland in Saskatchewan. Ecology 34:386-405.

Coupland, R. T., J. R. Willard, E. A. Ripley, and R. L. Randell. 1975. The Matador Project. Pages 19-50 in T. W. M. Cameron, and L. W. Billingsley, editors. Energy flow - its biological dimensions. Royal Society of Canada, Ottawa, Canada.

Daddy, F., M. J. Trlica, and C. D. Bonham. 1988. Vegetation and soil water differences among big sagebrush communities with different grazing histories. Southwestern Naturalist 33:413-424.

Dahlman, R. C., and C. L. Kucera. 1965. Root productivity and turnover in native prairie. Ecology 46:84-89.

Damman, A. W. H. 1971. Effect of vegetation changes on the fertility of a Newfoundland forest site. Ecological Monographs 41:253-270.

Davies, S. J., and P. Becker. 1996. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. Journal of Tropical Forest Science 8:542-569.

Davis, E. A., and C. P. Pase. 1977. Root system of shrub live oak: Implications for water yield in Arizona chaparral. Journal of Soil and Water Conservation 32:174-180.

Davis, G. R., W. A. Neilsen, and J. G. McDavis. 1983. Root distribution of Pinus radiata related to soil characteristics in five Tasmanian soils. Australian Journal of Soil Research 21:165-171.

de Castro, E. A., and J. B. Kauffman. 1998. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology 14:263-283.

Dennis, J. G., and P. L. Johnson. 1970. Shoot and rhizome-root standing crops of tundra vegetation at Barrow, Alaska. Arctic and Alpine Research 2:253-266.

Dennis, J. G., L. L. Tieszen, and M. A. Vetter. 1978. Seasonal dynamics of above- and belowground production of vascular plants at Barrow, Alaska. Pages 113-140 in L. L. Tieszen, editor. Vegetation and production ecology of an Alaskan arctic tundra. Ecological Studies 29. Springer-Verlag, New York, New York, USA.

Devidas, S., and J.-P. Puyravaud. 1995. Primary productivity of the herbaceous layer in a grazed savanna woodland, Bandipur National Park, southern India. Acta Oecologica 16:491-505.

Distel, R. A., and O. A. Fernández. 1988. Dynamics of root growth and decay in two grasses native to semi-arid Argentina. Australian Journal of Ecology 13:327-336.

Dobrowolski, J. P., M. M. Caldwell, and J. H. Richards. 1990. Basin hydrology and plant root systems. Pages 243-292 in C. B. Osmond, L. F. Pitelka, and G. M. Hidy, editors. Plant biology of the basin and range. Ecological Studies 80. Springer-Verlag, Berlin, Germany.

Duncan, W. H. 1941. A study of root development in three soil types in the Duke Forest. Ecological Monographs 11:141-164.

Ellenberg, H., R. Mayer, and J. Schauermann, editors. 1986. Ökosystemforschung. Ergebnisse des Sollingprojekts 1966-1986. Ulmer, Stuttgart, Germany.

Evdokimova, T. I., and L. A. Grishina. 1968. Productivity of root systems of herbaceous vegetation on flood plain meadows and methods for its study. Pages 24-27 in M. S. Ghilarov, V. A. Kovda, L. N. Novichkova-Ivanova, L. E. Rodin, and V. M. Sveshnikova, editors. Methods of productivity studies in root systems and rhizosphere organisms. International Symposium USSR, August 28--September 12, 1968. Nauka, Leningrad, Russia.

Farrish, K. W. 1991. Spatial and temporal fine-root distribution in three Louisiana forest soils. Soil Science Society of America Journal 55:1752-1757.

Fernandez, O. A., and M. M. Caldwell. 1975. Phenology and dynamics of root growth of three cool semi-desert shrubs under field conditions. Journal of Ecology 63:703-714.

Fernández, R. J., and J. M. Paruelo. 1988. Root systems of two Patagonian shrubs: A quantitative description using a geometrical method. Journal of Range Management 41:220-223.

Fiala, K. 1990. Live and dead underground plant biomass in a natural meadow hydrosere. Folia Geobotanica and Phytotaxonomica 25:113-135.

Fiala, K., and R. Herrera. 1988. Living and dead belowground biomass and its distribution in some savanna communities in Cuba. Folia Geobotanica and Phytotaxonomica 23:225-237.

Fiala, K., and V. Studený. 1988. Cutting and fertilization effect on the root system in several grassland stands. II. Vertical distribution of root biomass and changes in the carbohydrate content. Ekológia 7:27-42.

Finér, L., C. Messier, and L. De Grandpré. 1997. Fine-root dynamics in mixed boreal conifer--broad-leafed forest stands at different successional stages after fire. Canadian Journal of Forest Research 27:304-314.

Freckman, D. W., and R. A. Virginia. 1989. Plant-feeding nematodes in deep-rooting desert ecosystems. Ecology 70:1665-1678.

Friesen, D. K., I. M. Rao, R. J. Thomas, A. Oberson, and J. I. Sanz. 1997. Phosphorus acquisition and cycling in crop and pasture in low fertility tropical soils. Plant and Soil 196:289-294.

Garelkov, D. 1973. Biological productivity of some beech forest types in Bulgaria. Pages 307-314 in H. E. Young, editor. IUFRO biomass studies. College of Sciences and Agriculture, University of Maine, Orono, Maine, USA.

Gaze, S. R., J. Brouwer, L. P. Simmonds, and J. Bromley. 1998. Dry season water use patterns under Guiera senegalensis L. shrubs in a tropical savanna. Journal of Arid Environments 40:53-67.

Gehrmann, J., M. Gerriets, J. Puhe, and B. Ulrich. 1984. Untersuchungen an Boden, Wurzeln, Nadeln und erste Ergebnisse von Depositionsmessungen im Hils. Berichte des Forschungszentrums Waldökosysteme 2.

Gisi, U., and J. J. Oertli. 1981. Oekologische Entwicklung in Brachland verglichen mit Kulturwiesen. Acta Oecologica. Oecologia Plantarum 2:79-86.

Glatzel, G. 1983. Root distribution and soil water depletion in an oak-hornbeam stand (Quercus petraea, Q. robur, Carpinus betulus) and a spruce thicket (Picea abies). Pages 577-584 in W. Böhm, L. Kutschera, and E. Lichtenegger, editors. Wurzelökologie und ihre Nutzanwendung/Root ecology and its practical application. Bundesanstalt für alpenländische Landwirtschaft Grumpenstein, Irdning, F. R. Germany.

Gower, S. T. 1987. Relations between mineral nutrient availability and fine root biomass in two Costa Rica wet forests: a hypothesis. Biotropica 19:171-175.

Greenland, D. J., and J. M. L. Kowal. 1960. Nutrient content of the moist tropical forest of Ghana. Plant and Soil 12:154-174.

Greenwood, K. L., and K. J. Hutchinson. 1998. Root characteristics of temperate pasture in New South Wales after grazing at three stocking rates for 30 years. Grass and Forage Science 53:120-128.

Groeneveld, D. P. 1989. Shrub rooting and water acquisition on threatened shallow groundwater habitats in the Owens Valley, California. Pages 221-237 in Proceedings--Symposium on cheatgrass invasion, shrub die-off, and other aspects of shrub biology and management. General Technical Report INT-276. U.S.D.A. Forest Service Intermountain Research Station, Ogden, Utah, USA.

Groot, J. J. R., D. Koné, M. Traoré, and N. Kamissoko. 1995. Description du système racinaire de l'Andropogon gayanus, du Vigna unguiculata et du Stylosanthes hamata en zone soudano-sahélienne. Rapports PSS 8. Production Soudano-Sahélienne (PSS), Wageningen, The Netherlands.

Groves, R. H., and R. L. Specht. 1965. Growth of heath vegetation I. Annual growth curves of two heath ecosystems in Australia. Australian Journal of Botany 13:261-280.

Hansson, A.-C., A. Zhao, and O. Andrén. 1995. Fine-root production and mortality in degraded vegetation in Horqin sand rangeland in Inner Mongolia, China. Arid Soil Research and Rehabilitation 9:1-13.

Harris, W. F., R. S. Kinerson, Jr., and N. T. Edwards. 1977. Comparison of belowground biomass of natural deciduous forest and loblolly pine plantations. Pedobiologia 17:369-381.

Heitschmidt, R. K., R. J. Ansley, S. L. Dowhower, P. W. Jacoby, and D. L. Price. 1988. Some observations from the excavation of honey mesquite root systems. Journal of Range Management 41:227-231.

Hendriks, C. M. A., and F. J. J. A. Bianchi. 1995. Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech. Netherlands Journal of Agricultural Science 43:321-331.

Hertel, D. 1999. Das Feinwurzelsystem von Rein- und Mischbeständen der Rotbuche: Struktur, Dynamik und interspezifische Konkurrenz. Dissertationes Botanicae 317. J. Cramer, Berlin, Germany.

Higgins, K. B., A. J. Lamb, and B. W. van Wilgen. 1987. Root systems of selected plant species in mesic mountain fynbos in the Jonkershoek Valley, south-western Cape Province. South African Journal of Botany 53:249-257.

Hosegood, P. H. 1963. The root distribution of Kikuyu grass and Wattle trees. East African Agricultural and Forestry Journal 29:60-61.

Hulbert, L. C. 1955. Ecological studies of Bromus tectorum and other annual bromegrasses. Ecological Monographs 25:181-213.

Huttel, C. 1975. Root distribution and biomass in three Ivory Coast rain forest plots. Pages 123-130 in F. B. Golley, and E. Medina, editors. Tropical ecological systems: Trends in terrestrial and aquatic research. Ecological Studies 11. Springer-Verlag, Heidelberg, Germany.

Ignatenko, I. V., and F. I. Khakimzyanova. 1971. Soils and total phytomass reserves in dwarf birch - white dryas and willow tundras of the east European northlands. Soviet Journal of Ecology 2:300-305.

Ignatenko, I. V., A. V. Knorre, N. V. Lovelius, and B. N. Norin. 1972. Standing crop in plant communities at the station Ary-Mas. Pages 140-148 in F. E. Wielgolaski, and T. Rosswall, editors. Tundra biome. International Biological Programme (IBP) Tundra Biome Steering Committee, Stockholm, Sweden.

Isagi, Y., T. Kawahara, K. Kamo, and H. Ito. 1997. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecology 130:41-52.

Jama, B., R. J. Buresh, J. K. Ndufa, and K. D. Shepherd. 1998. Vertical distribution of roots and soil nitrate: tree species and phosphorus effects. Soil Science Society of America Journal 62:280-286.

Joffre, R., M. J. Leiva Morales, S. Rambal, and R. Fernández Ales. 1987. Dynamique racinaire et extraction de l'eau du sol par des graminées pérennes et annuelles méditerranéennes. Acta Oecologica. Oecologia Plantarum 8:181-194.

Johnsen, T. N., Jr. 1962. One-seed juniper invasion of northern Arizona grasslands. Ecological Monographs 2:187-207.

Jordan, P. W., and P. S. Nobel. 1984. Thermal and water relations of roots of desert succulents. Annals of Botany 54:705-718.

Kaletkina, N. G. 1974. Sezonnoe razvitie rastitel'nosti subal'pijskoj raznotravnoj stepi i kriofil'ioj pustoshi Gissarskogo chrebta. (Seasonal development of vegetation in the subalpine steppe and cryophytic heath of the Hissar Mountains. In Russian). Pages 7-41 in P. N. Ovchinnikov, editor. Rastitel'nost' Tadzhikistana i eë osvoenie. (Vegetation of Tajikistan and its use). Donish, Dushanbe.

Kalisz, P. J., R. W. Zimmerman, and R. N. Muller. 1987. Root density, abundance, and distribution in the mixed mesophytic forest of eastern Kentucky. Soil Science Society of America Journal 51:220-225.

Karizumi, N. 1978. Underground biomass. Pages 82-88 in T. Kira, Y. Ono, and T. Hosokawa, editors. Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synthesis 18. University of Tokyo Press, Tokyo, Japan.

Karpov, V. G., editor 1983. Faktory reguliatsii ekosistem elovykh lesov (Regulation factors of spruce forest ecosystems. In Russian). Nauka, Leningrad, Russia.

Kellman, M., and N. Roulet. 1990. Nutrient flux and retention in a tropical sand-dune succession. Journal of Ecology 78:664-676.

Kellman, M., and K. Sanmugadas. 1985. Nutrient retention by savanna ecosystems I. Retention in the absence of fire. Journal of Ecology 73:935-951.

Kern, K. G., W. Moll, and H. J. Braun. 1961. Wurzeluntersuchungen in Rein- und Mischbeständen des Hochschwarzwaldes (Vfl. Todtmoos 2/I-IV). (The rooting in pure and mixed stands of the upper Black Forest, experimental plot Todtmoos 2/I-IV. In German with English summary). Allgemeine Forst- und Jagdzeitung 132:241-260.

Khodachek, E. A. 1971. Vegetal matter of tundra phytocoenoses in the western part of Taymyr Peninsula (Translated from the original Russian publication in Botanicheskii Zhurnal 54:1059-1073). International Tundra Biome Translation 5. Tundra Biome Center, University of Alaska, College, Alaska, USA.

Kimmins, J. P., and B. C. Hawkes. 1978. Distribution and chemistry of fine roots in a white spruce - subalpine fir stand in British Columbia: implications for management. Canadian Journal of Forest Research 8:265-279.

Klinge, H. 1973. Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil. I. Fine root masses of pale yellow Latosol and a giant humus Podzol. Tropical Ecology 14:29-38.

Klinge, H. 1975. Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil. III. Nutrients in fine roots from giant humus Podsols. Tropical Ecology 16:28-38.

Knoop, W. T., and B. H. Walker. 1985. Interactions of woody and herbaceous vegetation in a Southern African savanna. Journal of Ecology 73:235-253.

Kochenderfer, J. N. 1973. Root distribution under some forest types native to West Virginia. Ecology 54:445-448.

Kosmas, C. S., N. Moustakas, N. G. Danalatos, and N. Yassoglou. 1996. The Spata field site: I. The impacts of land use and management on soil properties and erosion. II. The effect of reduced soil moisture on soil properties and wheat production. Pages 207-228 in C. J. Brandt, and J. B. Thornes, editors. Mediterranean desertification and land use. John Wiley and Sons, Chichester, UK.

Kreutzer, K. 1968. The root system of the red alder (Alnus glutinosa Gärtn.). Pages 114-119 in M. S. Ghilarov, V. A. Kovda, L. N. Novichkova-Ivanova, L. E. Rodin, and V. M. Sveshnikova, editors. Methods of productivity studies in root systems and rhizosphere organisms. International Symposium USSR, August 28--September 12, 1968. Nauka, Leningrad, Russia.

Kudrjasheva, O. I. 1974. Sezonnoe razvitie rastitel'nosti nizkotravnych polusavann v juzhnoj okonechnosti chrebta Aruk-Tau (stacionar Garauty). (Seasonal development of vegetation in the shortgrass steppe at the southern end of the Aruk-Tau Mountains (Station Garavuti). In Russian). Pages 77-105 in P. N. Ovchinnikov, editor. Rastitel'nost' Tadzhikistana i eë osvoenie. (Vegetation of Tajikistan and its use). Donish, Dushanbe, Tajikistan.

Kul'tiasov, M. V. 1925. Materialy po izucheniju isparenija i kornevoj sistemy soobshchestva vesehhich zfemerov. (Materials on a study of evaporation and the root system of an association of spring ephemerals. In Russian with French summary). Biulleten' Sredne-Aziatskogo Gosudarstvennogo Universiteta 10:79-87.

Kummerow, J., M. Kummerow, and L. Trabaud. 1990. Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France. Vegetatio 87:37-44.

Kummerow, J., and R. Mangan. 1981. Root systems in Quercus dumosa Nutt. dominated chaparral in southern California. Acta Oecologica. Oecologia Plantarum 2:177-188.

Ladygina, G. M., and N. P. Litvinova. 1974. Produktivnost' nekotorych lugovych soobshchestv vostochnogo Pamira. Problemy Botaniki 12:275-285.

Lamont, B. 1973. Factors affecting the distribution of protioid roots within the root systems of two Hakea species. Australian Journal of Botany 21:165-187.

Lavrinenko, D. D. 1972. Interaction of wood species in different types of forests. Indian National Scientific Documentation Center, New Delhi, India.

Lawson, G. W., K. O. Armstrong-Mensah, and J. B. Hall. 1970. A catena in tropical moist semi-deciduous forest near Kade, Ghana. Journal of Ecology 58:371-398.

Lawson, G. W., J. Jenik, and K. O. Armstrong-Mensah. 1968. A study of a vegetation catena in Guinea savanna at Mole Game Reserve (Ghana). Journal of Ecology 56:505-522.

Le Roux, X., T. Bariac, and A. Mariotti. 1995. Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna. Oecologia 104:147-155.

Lee, C. A., and W. K. Lauenroth. 1994. Spatial distribution of grass and shrub root systems in the shortgrass steppe. American Midland Naturalist 132:117-123.

Liang, Y. M., D. L. Hazlett, and W. K. Lauenroth. 1989. Biomass dynamics and water use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80:148-153.

Linkola, K., and A. Tiirikka. 1936. Über Wurzelsysteme und Wurzelausbreitung der Wiesenpflanzen auf verschiedenen Wiesenstandorten. Annales Botanici Societatis Zoologicae Botanicae-Fennicae Vanamo Vol. 6, No. 6. Druckerei der Finnischen Literatur- Gesellschaft, Helsinki, Finland.

Low, A. B., and B. B. Lamont. 1990. Aerial and below-ground phytomass of Banksia scrub-heath at Eneabba, South-western Australia. Australian Journal of Botany 38:351-359.

Lucot, E., and S. Bruckert. 1992. Organisation du système racinaire du chêne pédonculé (Quercus robur) développé en conditions édaphiques non contraignantes (sol brun lessivé colluvial). Annales des Sciences Forestieres 49:465-479.

Lutz, H. J. L., J. B. Ely, Jr., and S. L. Little, Jr. 1937. The influence of soil profile horizons on root distribution of white pine (Pinus strobus L.). Yale University School of Forestry Bulletin 44:1-75.

Manning, S. J., and M. G. Barbour. 1988. Root systems, spatial patterns, and competition for soil moisture between two desert shrubs. American Journal of Botany 75:885-893.

Martínez, F., O. Merino, A. Martín, D. García Martín, and J. Merino. 1998. Belowground structure and production in a Mediterranean sand dune shrub community. Plant and Soil 201:209-216.

McClaugherty, C. A., J. D. Aber, and J. M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481-1490.

McKell, C. M., M. B. Jones, and E. R. Perrier. 1962. Root production and accumulation of root material on fertilized annual range. Agronomy Journal 54:459-462.

McNaughton, S. J., F. F. Banyikwa, and M. M. McNaughton. 1998. Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587-592.

Mekkonen, K., R. J. Buresh, and B. Jama. 1997. Root and inorganic nitrogen distributions in sesbania fallow, natural fallow and maize fields. Plant and Soil 188:319-327.

Mensah, K. O. A., and J. Jenik. 1968. Root system of tropical tress 2. Features of the root system of iroko (Chlorophora excelsa Benth. et Hook.). Preslia 40:21-27.

Midwood, A. J., T. W. Boutton, S. R. Archer, and S. E. Watts. 1998. Water use by woody plants on contrasting soils in a savanna parkland: assessment with d2H and d18O. Plant and Soil 205:13-24.

Miller, P. C., R. Mangan, and J. Kummerow. 1982. Vertical distribution of organic matter in eight vegetation types near Eagle Summit, Alaska. Holarctic Ecology 5:117-124.

Miller, P. C., and E. Ng. 1977. Root:shoot biomass ratios in shrubs in southern California and central Chile. Madroño 24:215-223.

Miroshnichenko, Y. M. 1975. Kornevye sistemy drevesnych i kustarnikovych rastenij i ich zkologija v vostocnych karakumach. (Root systems of trees and bushes and their ecology in eastern Karakum. In Russian). Botanicheskii Zhurnal 60:1776-1795.

Montaña, C., B. Cavagnaro, and O. Briones. 1995. Soil water use by co-existing shrubs and grasses in the southern Chihuahuan Desert, Mexico. Journal of Arid Environments 31:1-13.

Moorhead, D. L., J. F. Reynolds, and P. J. Fonteyn. 1989. Patterns of stratified soil water loss in a Chihuahuan Desert community. Soil Science 148:244-249.

Mordelet, P., J.-C. Menaut, and A. Mariotti. 1997. Tree and grass rooting patterns in an African humid savanna. Journal of Vegetation Science 8:65-70.

Muc, M. 1977. Ecology and primary production of sedge-moss meadow communities, Truelove Lowland. Pages 157-184 in L. C. Bliss, editor. Truelove Lowland, Devon Island, Canada: A high arctic ecosystem. University of Alberta Press, Edmonton, Alberta, Canada.

Murphy, P. G., A. E. Lugo, A. J. Murphy, and D. C. Nepstad. 1995. The dry forests of Puerto Rico's south coast. Pages 178-209 in A. E. Lugo, and C. Lowe, editors. Tropical forests: management and ecology. Ecological Studies 112. Springer-Verlag, New York, New York, USA.

Nepstad, D. C., C. R. de Carvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. Negreiros, E. D. da Silva, T. A. Stone, S. E. Trumbore, and S. Vieira. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666-669.

Nnyamah, J. U., and T. A. Black. 1977. Rates and patterns of water uptake in a Douglas-fir forest. Soil Science Society of America Journal 41:972-979.

Nobel, P. S. 1989. Temperature, water availability, and nutrient levels at various soil depths: Consequences for shallow-rooted desert succulents, including nurse plant effects. American Journal of Botany 76:1486-1492.

Nobel, P. S., M. E. Loik, and R. W. Meyer. 1991. Microhabitat and diel tissue acidity changes for two sympatric cactus species differing in growth habit. Journal of Ecology 79:167-182.

Odum, H. T. 1970. Rain forest structure and mineral-cycling homeostasis. Pages H-3--H-52 in H. T. Odum, and R. F. Pigeon, editors. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. Division of Technical Information, U.S. Atomic Energy Commission, Oak Ridge, Tennessee, USA.

Okali, D. U. U., J. B. Hall, and G. W. Lawson. 1973. Root distribution under a thicket clump on the Accra Plains, Ghana: Its relevance to clump localization and water relations. Journal of Ecology 61:439-454.

Old, S. M. 1969. Microclimate, fire, and plant production in an Illinois prairie. Ecological Monographs 39:355-384.

Olsthoorn, A. F. M. 1991. Fine root density and root biomass of two Douglas-fir stands on sandy soils in the Netherlands. 1. Root biomass in early summer. Netherlands Journal of Agricultural Science 39:49-60.

Pandey, C. B., and J. S. Singh. 1992. Influence of rainfall and grazing on belowground biomass dynamics in a dry tropical savanna. Canadian Journal of Botany 70:1885-1890.

Parker, M. M., and D. H. Van Lear. 1996. Soil heterogeneity and root distribution of mature loblolly pine stands in Piedmont soils. Soil Science Society of America Journal 60:1920-1925.

Persson, H. 1982. Changes in the tree and dwarf shrub fine-roots after clear-cutting in a mature Scots pine stand. Swedish Coniferous Forest Project Technical Report 31:19pp.

Persson, H., Y. von Fircks, H. Majdi, and L. O. Nilsson. 1995. Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulfate application. Plant and Soil 168-169: 161-165.

Pietikäinen, J., E. Vaijärvi, H. Ilvesniemi, H. Fritze, and C. J. Westman. 1999. Carbon storage of microbes and roots and the flux of CO2 across a moisture gradient. Canadian Journal of Forest Research 29:1197-1203.

Plamboeck, A. H., H. Grip, and U. Nygren. 1999. A hydrological tracer study of water uptake depth in a Scots pine forest under two different water regimes. Oecologia 119:452-460.

Plewczynska-Kuras, U. 976. Estimation of biomass of the underground parts of meadow herbage in the three variants of fertilization. Polish Ecological Studies 2:63-74.

Popov, K. P. 1979. Fistashka v srednei Azii. (The pistachio in central Asia. In Russian). Ylym, Ashkhabad, Turkmenistan.

Puhe, J., H. Persson, and I. Börjesson. 1986. Wurzelwachstum und Wurzelschäden in skandinavischen Nadelwäldern. (Root growth and root damages in Scandinavian coniferous forests. In German with English summary). Allgemeine Forstzeitung 20:488-492.

Qiu, G.-K., Y.-K. Shen, D.-Y. Li, Z.-W. Wang, Q.-M. Huang, D.-D. Yang, and A.-X. Gao. 1992. Bamboo in sub-tropical eastern China. Pages 159-188 in S. P. Long, M. B. Jones, and M. J. Roberts, editors. Primary productivity of grass ecosystems of the tropics and sub-tropics. Chapman and Hall, London, UK.

Qiu, X., S. Xie, and G. Jin. 1984. A preliminary study on biomass of Lithocarpus xylocarpus forest in Xujiaba region, Ailao mountains, Yunnan (China). Acta Botanica Yunnanica 6:85-92.

Raich, J. W. 1983. Effects of forest conversion on the carbon budget of a tropical soil. Biotropica 15:177-184.

Rao, I. M. 1998. Root distribution and production in native and introduced pastures in the South American savannas. Pages 19-41 in J. E. Box, Jr., editor. Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Reynolds, E. R. C. 1970. Root distribution and the cause of its spatial variability in Pseudotsuga taxifolia (Poir.) Britt. Plant and Soil 32:501-517.

Rickard, W. H., and B. E. Vaughan. 1988. Plant community characteristics and responses. Pages 109-179 in W. H. Rickard, L. E. Rogers, B. E. Vaughan, and S. F. Liebetrau, editors. Shrub-steppe: Balance and change in a semi-arid terrestrial ecosystem. Developments in Agricultural and Managed-Forest Ecology 20. Elsevier, Amsterdam, The Netherlands.

Roberts, J. 1976. A study of root distribution and growth in a Pinus sylvestris L. (Scots pine) plantation in East Anglia. Plant and Soil 44:607-621.

Rodin, L. E., editor 1977. Produktivnost' rastitel'nosti aridnoi zony Azii (itogi sovetskich issledovanij po Mezhdunarodnoj biologicheskoj programme, 1965-1977 gg.). (Productivity of vegetation in arid zone of the Asia. (Synthesis of the Soviet studies for the International Biological Programme, 1965-1974. In Russian). Nauka, Leningrad, Russia.

Rosswall, T., J. G. K. Flower-Ellis, L. G. Johansson, S. Jonsson, B. E. Rydén, and M. Sonesson. 1975. Stordalen (Abisko), Sweden. Pages 265-294 in T. Rosswall, and O. W. Heal, editors. Structure and function of tundra ecosystems. Ecological Bulletin 20. Swedish Natural Science Research Council, Stockholm, Sweden.

Rui, L., M. J. A. Werger, H. J. During, and Z. C. Zhong. 1999. Biomass distribution in a grove of the giant bamboo Phyllostachys pubescens in Chongqing, China. Flora (Jena) 194:89-96.

Safford, L. O. 1974. Effect of fertilization on biomass and nutrient content of fine roots in a beech-birch-maple stand. Plant and Soil 40:349-363.

Safford, L. O., and S. Bell. 1972. Biomass of fine roots in a white spruce plantation. Canadian Journal of Forest Research 2:169-172.

Samoilova, E. M. 1968. The study of the tree root systems on sandy soils. Pages 195-200 in M. S. Ghilarov, V. A. Kovda, L. N. Novichkova-Ivanova, L. E. Rodin, and V. M. Sveshnikova, editors. Methods of productivity studies in root systems and rhizosphere organisms. International Symposium USSR, August 28--September 12, 1968. Nauka, Leningrad, Russia.

Sanford, R. L., Jr. 1989. Root systems of three adjacent, old growth Amazon forests and associated transition zones. Journal of Tropical Forest Science 1:268-279.

Saurina, N. I., and I. V. Kamenetskaya. 1969. Massa kornej sosny obyknovennoj (Pinus sylvestris L.) v sosnjake mshisto-lishajnikovom juzhnoj tajgi. (The root mass of Pinus sylvestris L. in moss-lichen pine forests of the southern taiga. In Russian with English summary). Biulleten Moskovskogo obshchestva ispytatelei prirody. Otdel biologicheskii 74:96-100.

Scherfose, V. 1990. Feinwurzelverteilung und Mykorrhizatypen von Pinus sylvestris in verschiedenen Bodentypen. Berichte des Forschungszentrums Waldökosysteme A 62:166pp. Scholes, R. J., and B. H. Walker. 1993. An African savanna: synthesis of the Nylsvley study. Cambridge Studies in Applied Ecology and Resource Management Cambridge University Press, Cambridge, UK.

Schreiber, K.-F., A. Yair, and M. Shachak. 1995. Ecological gradients along slopes of the northern Negev highlands, Israel. Pages 209-229 in H.-P. Blume, and S. M. Berkowicz, editors. Arid ecosystems. Advances in GeoEcology 28. Catena Verlag, Cremlingen, Germany.

Schroth, G., D. Kolbe, B. Pity, and W. Zech. 1996. Root system characteristics with agroforestry relevance of nine leguminous tree species and a spontaneous fallow in a semi-deciduous rainforest area of West Africa. Forest Ecology and Management 84:199-208.

Schulze, E.-D., H. A. Mooney, O. E. Sala, E. Jobbagy, N. Buchmann, G. Bauer, J. Canadell, R. B. Jackson, J. Loreti, M. Oesterheld, and J. R. Ehleringer. 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108:503-511.

Scully, N. J. 1942. Root distribution and environment in a maple-oak forest. Botanical Gazette 103:492-517.

Shackleton, C. M., B. McKenzie, and J. E. Granger. 1988. Seasonal changes in root biomass, root/shoot ratios and turnover in two coastal grassland communities in Transkei. South African Journal of Botany 54:465-471.

Shalyt, M. S. 1950. Podzemnaja cast' nekotorykh lugovykh, stepnykh i pustynnykh rastenyi i fitocenozov. C. I. Travjanistye i polukustarnigkovye rastenija i fitocenozy lesnoj (luga) i stepnoj zon. (Belowground parts of some meadow, steppe, and desert plants and plant communities. Part I: Herbaceous plants and subshrubs and plant communities of forest and steppe zones. In Russian). Trudy Botanicheskogo Instituta im. V.L. Komarova. Akademii nauk SSSR. Seriia III, Geobotanika 6:205-442.

Shalyt, M. S. 1952. Podzemnaja cast' nekotorykh lugovykh, stepnykh i pustynnykh rastenyi i fitocenozov. C. 2. Travjanistye, polukustarnigkovye i kustarnigkovye rastenija i fitocenozy pustynnoj zony. (Belowground parts of some meadow, steppe, and desert plants and plant communities. Part 2: Herbaceous plants, subshrubs, and shrubs, and plant communities of the desert zone. In Russian). Trudy Botanicheskogo Instituta im. V.L. Komarova. Akademii nauk SSSR. Seriia III, Geobotanika 8:71-139.

Shalyt, M. S., and L. F. Zhivotenko. 1968. Overground and underground parts of certain grass and dwarf semishrub phytocoenoses of the Crimean Jaila (mountain pastures) and the technique of their estimation. Pages 204-208 in M. S. Ghilarov, V. A. Kovda, L. N. Novichkova-Ivanova, L. E. Rodin, and V. M. Sveshnikova, editors. Methods of productivity studies in root systems and rhizosphere organisms. International Symposium USSR, August 28--September 12, 1968. Nauka, Leningrad, Russia.

Sims, P. L., J. S. Singh, and W. K. Lauenroth. 1978. The structure and function of ten western North American grasslands: II. Intra-seasonal dynamics in primary producer compartments. Journal of Ecology 66:547-572.

Singh, J. S., and D. C. Coleman. 1977. Evaluation of functional root biomass and translocation of photoassimilated C14 in a shortgrass prairie ecosystem. Pages 29-37 in J. K. Marshall, editor. The belowground ecosystem: a synthesis of plant-associated processes. Range Science Department Science Series 26. Colorado State University, Fort Collins, Colorado, USA.

Singh, V. 1994. Morphology and pattern of root distribution in Prosopis cineraria, Dalbergia sissoo and Albizia lebbek in an arid region of north-western India. Tropical Ecology 35:133-146.

Smit, G. N., and N. F. G. Rethman. 1998. Root biomass, depth distribution and relations with leaf biomass of Colophospermum mopane. South African Journal of Botany 64:38-43.

Soumaré, A., J. J. R. Groot, D. Koné, and S. Radersma. 1994. Structure spatiale du système racinaire de deux arbres du Sahel: Acacia seyal et Sclerocarya birrea. Rapports PSS 5. Production Soudano-Sahélienne (PSS), Wageningen, The Netherlands.

Specht, R. L. 1957. Dark Island heath (Ninety-mile Plain, South Australia) III. The root system. Australian Journal of Botany 5:103-114.

Srivastava, S. K., K. P. Singh, and R. S. Upadhyay. 1986. Fine root growth dynamics in teak (Tectona grandis Linn. F.). Canadian Journal of Forest Research 16:1360-1364.

Steele, S. J., S. T. Gower, J. G. Vogel, and J. M. Norman. 1997. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology 17:577-587.

Sternberg, P. D., M. A. Anderson, R. C. Graham, J. L. Beyers, and K. R. Tice. 1996. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72:89-98.

Strong, W. L., and G. H. La Roi. 1983. Rooting depths and successional development of selected boreal forest communities. Canadian Journal of Forest Research 13:577-588.

Sturges, D. L. 1980. Soil water withdrawal and root distribution under grubbed, sprayed, and undisturbed big sagebrush vegetation. Great Basin Naturalist 40:157-164.

Sveshnikova, V. M. 1968. Root system distribution and biomass of plants in Pamir Mountain deserts. Pages 208-213 in M. S. Ghilarov, V. A. Kovda, L. N. Novichkova-Ivanova, L. E. Rodin, and V. M. Sveshnikova, editors. Methods of productivity studies in root systems and rhizosphere organisms. International Symposium USSR, August 28--September 12, 1968. Nauka, Leningrad, Russia.

Thompson, J., J. Proctor, V. Viana, W. Miliken, J. A. Ratter, and D. A. Scott. 1992. Ecological studies on a lowland evergreen rain forest on Maracá Island, Roraima, Brazil. I. Physical environment, forest structure and leaf chemistry. Journal of Ecology 80:689-703.

Toky, O. P., and R. P. Bisht. 1992. Observations on the rooting patterns of some agroforestry trees in an arid region of north-western India. Agroforestry Systems 18:245-263.

Tryon, P. R., and F. S. Chapin, III. 1983. Temperature control over root growth and root biomass in taiga forest trees. Canadian Journal of Forest Research 13:827-833.

Turner, L. M. 1936. A comparison of roots of southern shortleaf pine in three soils. Ecology 17:649-658.

Uchida, M., T. Nakatsubo, T. Horikoshi, and K. Nakane. 1998. Contribution of micro-organisms to the carbon dynamics in black spruce (Picea mariana) forest soil in Canada. Ecological Research 13:17-26.

Usol'tsev, V. A., and I. S. Krepkii. 1994. Regression analysis of vertical-fraction distribution of root mass in Aman-Karagai pine forests. Russian Journal of Ecology 25:87-97.

Van Rees, K. C. J., and N. B. Comerford. 1986. Vertical root distribution and strontium uptake of a slash pine stand on a Florida spodosol. Soil Science Society of America Journal 50:1042-1046.

Vance, E. D., and N. M. Nadkarni. 1992. Root biomass distribution in a moist tropical montane forest. Plant and Soil 142:31-39.

Vandenbeldt, R. J. 1991. Rooting systems of western and southern African Faidherbia albida (Del.) A. Chev. (syn. Acacia albida Del.) - a comparative analysis with biogeographic implications. Agroforestry Systems 14:233-244.

Vyskot, M. 1973. Root biomass of silver fir (Abies alba Mill.). Acta Universitatis Agriculturae (Brno), Series C 42:215-261.

Wallace, A., E. M. Romney, and J. W. Cha. 1980. Depth distribution of roots of some perennial plants in the Nevada Test Site area of the northern Mojave Desert. Great Basin Naturalist Memoirs 4:201-207.

Watts, S. E. 1993. Rooting patterns of co-occurring woody plants on contrasting soils in a subtropical savanna. Master's thesis. Texas A&M University, College Station, Texas, USA.

Weaver, J. E., and R. W. Darland. 1949. Soil-root relationships of certain native grasses in various soil types. Ecological Monographs 19:303-338.

Weaver, J. E., V. H. Hougen, and M. D. Weldon. 1935. Relation of root distribution to organic matter in prairie soil. Botanical Gazette 96:389-420.

Weaver, T. 1977. Root distribution and soil water regimes in nine habitat types of the northern Rocky Mountains. Pages 239-244 in J. K. Marshall, editor. The belowground ecosystem: a synthesis of plant-associated processes. Range Science Department Science Series 26. Colorado State University, Fort Collins, Colorado, USA.

Webber, P. J., and D. E. May. 1977. The magnitude and distribution of belowground plant structures in the alpine tundra of Niwot Ridge, Colorado. Arctic and Alpine Research 9:157-174.

Wright, T. W. 1955. Profile development in the sand dunes of Culbin Forest, Morayshire. Journal of Soil Science 6:270-283.

Xu, Y. 1991. Ökologische Grundlagen für den Anbau der Großen Küstentanne (Abies grandis Lindl.) auf vernässten Böden. Berichte des Forschungszentrums Waldökosysteme A 67:

Yano, N., and R. Kayama. 1975. Seasonal and yearly change of biomass and litter -- underground. Pages 147-160 in M. Numata, editor. Ecological studies in Japanese grasslands. JIBP Synthesis 13. University of Tokyo Press, Tokyo, Japan.

Yin, X., J. A. Perry, and R. K. Dixon. 1989. Fine-root dynamics and biomass distribution in a Quercus ecosystem following harvesting. Forest Ecology and Management 27:159-177.

Zhang Kebin. 1989. The growth of man-made forests of Haloxylon ammodendron and their soil water contents in the Minqin desert region, Gansu Province, China. Journal of Arid Environments 17:109-115.

Zverev, N. E., and R. D. Seiidova. 1990. Underground mass of shrub and subshrub plants of the Karakum. Problems of Desert Development 1990(1):49-54.


[Back to M072-004]