Ecological Archives E093-044-A2

John P. DeLong and David A. Vasseur. 2012. A dynamic explanation of size-density scaling in carnivores. Ecology 93:470–476.

Appendix B (Table B1). Details, sources, and fits for functional responses of mammalian carnivores.  For those functional responses that were re-estimated by us, R2 is shown, and raw data for these latter functional responses are provided in Supplement 1.

Carnivore
species
Mass
(kg)
Source Prey
species
Mass
(kg)
Source Handling
time (day)
Area of capture
(ha/day)
Source R2 of
new fit
Mustela
nivalis
0.05 1 Microtus
rossiaemeridionalis
0.03 1 0.7
(0.5, 1.4)
0.3
(0.1, 0.5)
1 0.65
Mustela
nivalis
0.05 1 Microtus
pennsylvanicus
0.04 2 2.0
(1.3, 4.5)
0.02
(0.01, 0.03)
3 0.75
Canis
latrans
13 4 Lepus
americanus
1.57 2 0.42
(-0.42, 0.14)
2.13
(-2.6, 6.9)
5 0.50
Martes
martes
1.3 4 Voles 0.003 2 0.18
(0.10, 0.57)
1.0
(-3.4, 5.4)
6 0.11
Vulpes
vulpes
4.6 4 Lepus
timidus
3.1 2 3.9
(2.7, 7.3)
0.35
(0.07, 0.63)
7 0.71
Canis
lupus
46 4 Alces
alces
361 2 39.7
(32.2, 52.1)
10.1
(0.46, 19.7)
8 0.223
Canis
lupus
46 4 Alces
alces
361 2 24.1 0.001 9 -
Lynx
canadensis
11.2 4 Lepus
americanus
1.57 2 0.76 3.1 10 -
Lynx
lynx
20 4 Capreolus
capreolus
20.4 2 9.86 27.4 11 -

Literature Cited

1. Sundell, J., K. Norrdahl, E. Korpimäki, and I. Hanski. 2000. Functional response of the least weasel, Mustela nivalis nivalis. Oikos 90:501–508.

2. Sieg, A. E., M. P. O'Connor, J. N. McNair, B. W. Grant, S. J. Agosta, and A. E. Dunham. 2009. Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? The American Naturalist 174:720–733.

3. Turchin, P., and I. Hanski. 1997. An empirically based model for latitudinal gradient in vole population dynamics. The American Naturalist 149:842–874.

4. Carbone, C., and J. L. Gittleman. 2002. A common rule for the scaling of carnivore density. Science 295:2273 –2276.

5. O'Donoghue, M., S. Boutin, C. Krebs, G. Zuleta, D. L. Murray, and E. J. Hofer. 1998. Functional responses of coyotes and lynx to the snowshoe hare cycle. Ecology 79:1193–1208.

6. Zalewski, A., W. Jedrzejewski, and B. Jedrzejewska. 1995. Pine marten home ranges, numbers and predation on vertebrates in a deciduous forest (Bialowieza National Park, Poland). Annales Zoologici Fennici 32:131–144.

7. Angerbjörn, A. 1989. Mountain hare populations on islands: effects of predation by red fox. Oecologia 81:335–340.

8. Eberhard, L. L. 2000. Reply: Predator-prey ratio dependence and regulation of moose populations. Canadian Journal of Zoology 78:511–513.

9. Jost, C., G. Devulder, J. A. Vucetich, R. O. Peterson, and R. Arditi. 2005. The wolves of Isle Royale display scale-invariant satiation and ratio-dependent predation on moose. Journal of Animal Ecology 74:809–816.

10. Stenseth, N. C., W. Falck, K.-S. Chan, O. N. Bjørnstad, M. O'Donoghue, H. Tong, R. Boonstra, S. Boutin, C. J. Krebs, and N. G. Yoccoz. 1998. From patterns to processes: Phase and density dependencies in the Canadian lynx cycle. Proceedings of the National Academy of Sciences of the United States of America 95:15430–15435.

11. Nilsen, E. B., J. D. C. Linnell, J. Odden, and R. Andersen. 2009. Climate, season, and social status modulate the functional response of an efficient stalking predator: the Eurasian lynx. The Journal of Animal Ecology 78:741–751.


[Back to E093-044]